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ABSTRACT 

Squirrel cage induction motors (SCIMs) account for approximately 87% of all AC motors in 

the industry. However, during their operational lifetime, SCIMs are subjected to various 

stresses, including thermal, mechanical, electrical, and environmental factors, which can lead 

to faults despite robust design and manufacturing standards. Faults in SCIMs are classified into 

electrical (stator and rotor faults) and mechanical (bearing and rotor faults). This study 

investigates the detection of broken rotor bar (BRB) faults in SCIMs using stray magnetic flux 

measurements with randomly positioned sensor. The research aims to validate the measurement 

method and assess its efficacy in detecting BRB faults in a steady state using random sensor 

positioning. The experimental setup involved two groups of SCIMs (Siemens and Končar), 

each comprising two identical motors—one maintained in a healthy state and the other with an 

induced BRB. Three analytical approaches were employed: statistical analysis of raw data, 

time-domain feature analysis, and Fast Fourier Transformation (FFT) analysis. The statistical 

analysis aimed to validate the consistency of the measurement method. Results showed that the 

measurements were time-independent for each motor condition, indicating the method’s 

reliability. However, statistical analysis alone was inconclusive for BRB detection due to 

significant differences between healthy motors. The feature analysis focused on 19 time-domain 

features, revealing that peak-to-rms, impulse factor, and clearance factor were reliable 

indicators for detecting BRB in Siemens motors, especially when a large number of 

measurements were used. For Končar motors, however, no features consistently indicated BRB 

faults at high reliability levels. The FFT analysis proved to be the most effective approach for 

BRB detection. By averaging the frequency spectra over the interval of 0-100 Hz and analysing 

specific frequency indicators, the FFT method reliably detected BRB faults. The reliability of 

detection increased with the number of measurements, achieving high accuracy with as few as 

10 random measurements. This research demonstrates that BRB faults in SCIMs can be reliably 

detected using stray magnetic flux measurements with random sensor positioning, particularly 

when employing FFT analysis. Future research should explore shorter measurement durations, 

a wider variety of motor types, and the detection of multiple broken rotor bars. The limitations 

of this study include the controlled laboratory environment, the specific motor types tested, and 

the constant measurement duration and sampling frequency.  

Key words: Broken rotor bar; Squirrel cage induction motor; Stray flux; Triaxial air coil; 

Sensor random positioning;  
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1. INTRODUCTION 

The induction motor (IM) is an alternating current (AC) electrical machine used to drive 

various industrial utility components such as compressors, pumps, fans, elevators, cranes, etc. 

There are two types of IMs: wound rotor induction motors (WRIMs) and squirrel cage induction 

motors (SCIMs). As stated in [1], SCIMs account for aproximately 87 % of the total AC motor 

population in the industry. 

SCIMs are designed and tested in accordance with standards (e.g., International 

Electrotechnical Commission - IEC, National Electrical Manufacturers Association - NEMA) 

that specify working conditions for motors. During their lifetime, motors may be subjected to 

different types of stresses (thermal, mechanical, electrical, environmental conditions - chemical 

pollution) with varying intensity [2]. Since standards cannot cover all scenarios in the industry 

and manufacturing process has a certain level of imperfection (quality of materials used and 

quality of the assembly process), it is to be expected that even robust machines such as SCIMs 

have defects [3]. 

Faults in SCIMs are divided into two categories: electrical and mechanical faults [4], [5]. 

Electrical faults are further divided into: 

• stator (turn-to-turn, coil-to-coil, phase-to-phase, phase-to-ground, and open 

circuit) 

• rotor (broken rotor bar and broken end ring) 

• power supply faults (phase imbalance and single phasing) 

 

Mechanical faults are divided into: 

• stator (frame vibrations) 

• rotor (unbalanced, bent rotor, static, dynamic, and mixed eccentricity) 

• bearing faults (outer ring, inner ring, rolling elements, and loss of lubricant) 

 

Division of the SCIM faults is shown in Figure 1. 
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Figure 1. Division of the squirrel cage induction motor faults. 

The rotor of the SCIM is a solid body produced by casting or fabrication. In all casting 

processes, molten aluminium or an aluminium alloy is injected into a preheated, stacked rotor 

core. During fabrication, the rotor bars are inserted individually and then shorted with rings at 

each end [6]. As stated in [7] and [8], during motor service the rotor can be subjected to various 

stresses that can lead to rotor bar fracture: thermal, magnetic, dynamic, mechanical and 

environmental stresses. Calculations and measurements from [9], [10] and [11] have shown that 

a broken rotor bar increases the total harmonic distortion, motor current, and power dissipation, 

thus reducing motor efficiency. Calculations have also shown that a broken rotor bar leads to 

an increase in the currents in the neighbouring bars and thus to their potential breakage. 

Examples in [12] show that at rated load, one broken bar can lead to a relative increase of 30% 

in the current in the neighbouring bars, and in the case of three neighbouring broken bars, the 

relative increase can reach about 60%. As shown in [13] this type of fault can be random in 

nature, rotor of a  6.6 kV, 500 kW motor has 8 nonadjacent broken bars that are unevenly 

distributed. Early detection of the rotor bar is important because bearing failures may occur 

over time due to the induced shaft vibrations [14]. 

Broken rotor bar fault and broken end ring fault are illustrated in Figure 2. 

The distribution of the fault types analysed in various studies is shown in Figure 3. The 

studies shown in Figure 3 are the Electric Power Research Institute (EPRI) study, the Motor 

Reliability Working Group (MRWG) study of the Institute of Electrical and Electronics 

Engineers (IEEE), the 1995 study, and the Allianz study [15]. The EPRI study deals with 

https://www.mdpi.com/1424-8220/24/10/3080#fig_body_display_sensors-24-03080-f001
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SCIMs, WRIMs, and synchronous motors (100 hp and above at low voltage levels 460 V and 

575 V, and medium voltage motors 2.3 kV, 4 kV, 6.6 kV, and 13.2 kV) [16]. 

  
(a) (b) 

Figure 2. Illustration of broken rotor: (a) bar; (b) end ring. 

 

 

Figure 3. Squirrel cage induction motor fault distribution. 

The 1995 study [17] covers SCIMs of 10 kW and above. The IEEE MRWG study covers 

asynchronous, synchronous, wound-rotor, and DC motors over 200 hp that are not older than 

15 years [18], [19]. The Alliance study covers medium-voltage motors with high power [14]. 

The methods for detecting broken rotor bars are divided into model-based and signal-

processing methods [7], [8].  

The model-based methods are further divided into: 

• methods based on resistance estimation (they use the deviation of the estimated 

rotor resistance from the known value as a fault indicator)  

• methods based on estimation of other parameters (estimation of stator current, 

rotor flux, rotor speed, etc.)  
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• methods based on a digital twin (they automatically measure and estimate motor 

parameters and variables based on online data) 

 

The methods based on signal processing are divided into: 

• the time domain (decomposition products of currents and voltages, differential 

measurement of the air-gap magnetic field [20], etc.)  

• the frequency domain (fast Fourier transform) 

• time–frequency domain (short-time Fourier transform, Chriplet transform, Wigner–

Ville distribution, Hilbert–Huang transform, continuous wavelet transform, discrete 

wavelet transform, etc.) 

Magnetic flux fault detection is based on the direct or indirect measurement of the 

magnetic flux or magnetic flux density. Depending on the location of the measurement, there 

is an external or internal detection method. Internal magnetic flux or air gap flux detection is 

based on the measurement of the magnetic flux or magnetic flux density in the air gap of the 

electrical machine. Although air-gap flux detection was developed in the 1970s to detect faults 

in the stator winding of synchronous generators, it is still an active field of research [21]. This 

type of fault detection is considered invasive as it requires access to the air gap or stator slots. 

This means that the work process must be stopped, the electrical machine dismantled, and the 

sensor carefully positioned. Proper installation of air gap sensors can be carried out during an 

overhaul or manufacturing process. 

The external magnetic flux or stray flux is the magnetic flux that radiates into the 

environment of the electrical machine. Although the magnitude of the stray flux is much weaker 

than the air-gap flux, this physical quantity reflects the anomalies (asymmetries) of the total 

magnetic field in the electrical machine [22]. The oldest paper on monitoring stray flux 

available on the Web of Science dates back to 1971 [23]. In the paper, the authors investigated 

an unbalanced supply. The aim was to detect certain frequency components in the spectrum of 

the coil voltage and use this information to activate the protective device that disconnects the 

motor from the mains in the event of an unbalanced supply. The air-core coil was placed on the 

non-drive side of the motor. 

The modern ship is a complex industrial environment built and maintained according to 

the classification rules of various classification societies (Det Norske Veritas, Lloyd's Register, 

Bureau Veritas, etc.). The topic of the dissertation relates to ship industry through the category 

of ship maintenance. Maintenance includes all technical, administrative, and managerial 
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activities during the life cycle of an object to maintain or restore it to a condition in which it 

can perform its required function. Maintenance has an impact on safety, the environment, 

product quality, and overall profit [24]. Maintenance can be divided into four categories: 

corrective, preventive, predictive, and proactive. The philosophy of corrective maintenance is 

to take corrective actions after equipment failure. This strategy may be acceptable if the failure 

does not cause serious problems. Preventive maintenance is time-based maintenance, meaning 

that maintenance actions are scheduled at specific time intervals. The philosophy is to repair or 

replace damaged equipment before failure occurs [25]. Predictive maintenance is divided into 

two categories: condition-based maintenance (CBM) and reliability centred maintenance 

(RCM). There are many similar definitions for CBM [26]. This document paraphrases a 

description from Bureau Veritas that uses the term condition monitoring system: Condition 

Monitoring Systems (CMS) are computer-based systems that use complex algorithms, machine 

learning, and knowledge of asset defect data to make diagnoses and predictions. A CMS 

generally consists of the following main functions: data acquisition, data processing, diagnostic 

assessment, prognostic assessment, and health management [27]. RCM is a strategy that 

integrates a mix of corrective, preventive, predictive, and proactive maintenance strategies to 

ensure adequate reliability levels in a cost-effective manner [28]. Proactive maintenance 

includes CMB, RCM with the addition of risk-based maintenance (RBM) [29]. RBM is 

designed to investigate all failure modes, determine the risk associated with these failure modes, 

and develop a maintenance strategy that minimises the occurrence of the high-risk failure 

modes [30]. 

According to [31], the maintenance requirements for SCIMs are as follows: high insulation 

resistance and low contact resistance, proper lubrication of bearings, ensuring that both the 

inside and the outside are always clean and dry. Maintenance mainly concerns the stator 

winding and bearings, as shown in Figure 3. Rotor maintenance requires only visual inspection, 

i.e., signs of damage and overheating in the cage winding and laminations. The manual is 

mainly focused on the maintenance of the stator winding (insulation resistance) and bearings 

(lubrication). 

The motivation for extracting information about the motor state, i.e., broken rotor bar 

(BRB), with random positioning of the sensor is based on the review articles [8], [32], [33] and 

[34], the literature review presented in the next section of this paper, and the assumption that 

the human factor plays a role in the monitoring process. From the review articles and the 

literature review, it can be observed that the research papers study BRB faults with a stationary 
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position of the sensor, i.e., the sensor is placed at a fixed position. There can be more sensors 

but all of them have fixed positions. The question that can be asked, can reliably information 

of BRB fault be obtained if the measurement is performed with random positioning of the 

sensor over the motor surface? The context of this question can fall into a category of routine 

maintenance, where operator would be free to choose the position of the sensor on every motor  

health inspection.  

Two objectives of this research are to validate the measurement method and to investigate 

BRB detection in a steady state using the magnetic stray flux method with random positioning 

of the sensor over the surface of the motor. The validation of the measurement method requires 

that the information about the state of the motor (healthy or BRB) is time-independent, i.e., if 

the measurement is performed with random positioning at different times for a given motor, 

then all measurements must not show a difference if the motor has not changed its state. If the 

motor changes its state from healthy to BRB at a certain point in time, the measurements before 

and after must show a difference. Difference in measurement implies difference in data which 

must numerically show the difference between healthy and BRB state or must not numerically 

show difference in the case of measurement validation. 

In this dissertation three approaches are taken for BRB detection. First approach to 

measurement validation and BRB detection is statistical analysis conducted on raw data. 

Appropriate statistical tests based on the distribution of measurement data are used for the 

validation and detection of BRB. Second approach is based on time-domain feature analysis 

and third approach is the application of Fast Fourier Transformation (FFT). A simplified 

diagram of BRB detection is shown in Figure 4. 

The investigations carried out in this dissertation took place under laboratory conditions. 

 

Figure 4. Simplified diagram of BRB detection;                                                                                                         

IM 3D model source: https://mall.industry.siemens.com/mall/en/mx/Catalog/Product/1LE10030DB222AA4 

The dissertation is divided into six chapters. After the introduction, Chapter 2 presents 

the literature that is relevant to the research of this dissertation. Chapter 3 describes the 
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dissertation’s primary goal and research plan, which addresses the idea of developing portable 

triaxial air core sensor along with data logging system that can detect broken roto bar with 

random position approach. Chapter 4 describes the components used to develop a triaxial air 

coil sensor. Furthermore, test objects, experimental setup and methodology is also described in 

Chapter 4. Obtained results are presented in Chapter 5 and finally conclusion is given in Chapter 

6.  

 

2. THEORETICAL BACKGROUND 

 

In this section theoretical background of stray magnetic flux and its link to broken rotor bar 

detection is given. The theoretical background is based on the theory presented in following 

references: [35], [36], [32], [37], [38] and [39]. 

IM is a rotating electrical machine. Its basic parts are stator and rotor. Cross section of 

the IM is shown in Figure 5.  

 

Figure 5. Cross section of the induction motor - basic parts. 

Stator windings are connected to three phase power supply with frequency 𝑓𝑠 (when there 

is no need for speed regulations the supply frequencies are grid frequencies, 50 or 60 Hz). Stator 

windings generate rotating magnetic field that induces electromotive force in rotor conductors. 

Induced electromotive force drives the current through rotor conductors. Due to presence of 

rotor currents in rotor conductors and the fact that these conductors are located in the rotating 

stator magnetic field, the electrodynamical force (𝐹 = 𝐵𝐼𝑙) is generated on conductors which 

results with the rotation of the rotor. For IM to work there must always be difference in stator 

rotating magnetic field and the speed of the rotor. The normalized difference in speed is called 

slip: 
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 𝑠 =
𝑛𝑠 − 𝑛

𝑛𝑠
 (1) 

where 𝑛𝑠 is synchronous speed, i.e., rotating speed of stator magnetic field and 𝑛 is rotational 

speed of the rotor (mechanical speed). 

Theoretical background is based on a simplified magnetic circuit of the induction motor 

[35]. Figure 6 shows illustrative diagram of one quarter of the induction motor cross section. 

 

Figure 6. Illustration of one quarter of IM cross section with geometrical quantities and magnetic flux lines;                    

Source: Koroglu, S., Adam, A.A., Umurkan, N. et al. Leakage magnetic flux density in the vicinity of induction 

motor during operation. Electr Eng 91, 15–21 (2009). https://doi.org/10.1007/s00202-009-0111-4. 

Figure 6 shows geometrical parameters of the induction motor construction: 𝑟𝑟 – radius 

of the rotor, 𝑟𝑠 – radius of the stator slots, 𝐿𝑔 – air gap length, 2𝑒 – thickens of the stator yoke, 

𝜃𝑝 – pole angle in [𝑟𝑎𝑑] and 𝑥 – distance from rotor surface. It also shows magnetic flux lines 

(highlighted dashed lines) and corresponding magnetic flux components: 𝛹𝑆𝑡𝑟𝑎𝑦 – stray flux, 

𝛹𝐴𝑖𝑟 𝑔𝑎𝑝 – air gap flux, 𝛹𝑀𝑎𝑖𝑛 – main flux, 𝛹𝐿𝑠 – leakage stator flux and 𝛹𝐿𝑟 – leakage rotor 

flux. 

Equivalent magnetic circuit of the geometry presented on Figure 6 is shown in Figure 

7. 
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Figure 7. Equivalent magnetic circuit of the simplified cross section of IM.                                                      

Source: Koroglu, S., Adam, A.A., Umurkan, N. et al. Leakage magnetic flux density in the vicinity of induction 

motor during operation. Electr Eng 91, 15–21 (2009). https://doi.org/10.1007/s00202-009-0111-4. 

On Figure 7 elements displayed with resistor symbols represent reluctances of the 

simplified IM geometry and two elements displayed with current source symbols represent 

stator and rotor magnetomotive forces (MMF). From Figure 7 it can be seen that air gap flux is 

the sum of the main flux and stray flux. From equivalent magnetic circuit relation of the air gap 

flux and stray flux can be derived [35]: 

 𝛹𝑆𝑡𝑟𝑎𝑦 =
𝑅𝑆𝑡𝑎𝑡𝑜𝑟

𝑅𝑆𝑡𝑎𝑡𝑜𝑟 + 𝑅𝑆𝑡𝑟𝑎𝑦
𝛹𝐴𝑖𝑟 𝑔𝑎𝑝 (2) 

 

With geometry quantities displayed on Figure 6 reluctances can be expressed: 
 

 𝑅𝑆𝑡𝑎𝑡𝑜𝑟 =
𝑙𝑆𝑡𝑎𝑡𝑜𝑟

𝜇0𝜇𝑆𝑡𝑎𝑡𝑜𝑟𝐴𝑆𝑡𝑎𝑡𝑜𝑟
=

2𝑒 + 𝑟𝑠𝜃𝑝

𝜇0𝜇𝑆𝑡𝑎𝑡𝑜𝑟𝑟𝑠𝜃𝑝𝐿𝑠𝑡𝑎𝑐𝑘
 (3) 

 𝑅𝑆𝑡𝑟𝑎𝑦 =
𝑙𝑆𝑡𝑟𝑎𝑦

𝜇0𝐴𝑆𝑡𝑟𝑎𝑦
=

2𝑥 + (𝑟𝑠 + 𝑒 + 𝑥)𝜃𝑝

𝜇0(𝑟𝑠 + 𝑒 + 𝑥)𝜃𝑝𝐿𝑠𝑡𝑎𝑐𝑘
 (4) 

 

where 𝑙 is flux path length, 𝐴 is cross section area at the mean radius of the corresponding 

section, 𝜇0 is permeability of the vacuum,  𝜇 is relative permeability and 𝐿𝑠𝑡𝑎𝑐𝑘 is length of 

active part of induction motor. 

Inserting equations (2) and (3) in equation (1) and expressing magnetic flux through magnetic 

flux density and corresponding surfaces the following expression is obtained [35]: 

 

 𝐵𝑆𝑡𝑟𝑎𝑦 =
1

1 +
2𝑥 + (𝑟𝑠 + 𝑒 + 𝑥)𝜃𝑝

𝑟𝑠 + 𝑒 + 𝑥
𝜇𝑆𝑡𝑎𝑡𝑜𝑟𝑟𝑠
2𝑒 + 𝑟𝑠𝜃𝑝

(
𝑟𝑠 − 𝑠

𝑟𝑠 + 𝑒 + 𝑥
) 𝐵𝐴𝑖𝑟 𝑔𝑎𝑝 

(5) 
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From equation it is observable that stray magnetic flux density depends on the 

geometrical and material properties of induction machine, it decreases its vales with increase 

of x, i.e., increase of distance from stator surface and it is proportional to the magnetic flux 

density of the air gap. 

Because magnetic flux density in the air gap is the superposition of magnetic flux 

density generated by stator and magnetic flux density generated by rotor for further analysis 

equation can be written: 

 𝐵𝑆𝑡𝑟𝑎𝑦 = 𝑓(𝑥)𝐵𝐴𝑖𝑟 𝑔𝑎𝑝 = 𝑓(𝑥)(𝐵𝑆𝑡𝑎𝑡𝑜𝑟 + 𝐵𝑅𝑜𝑡𝑜𝑟) (6) 

 

With absence of current in a broken rotor bar, magnetic flux density generated by rotor 

will be affected and thus according to equation (5) this change will be reflected in stray 

magnetic flux. Rotor magnetic flux density can further be expressed: 

 𝐵𝑅𝑜𝑡𝑜𝑟 =
𝜇0

𝑔
𝐹𝑟(𝛼) (7) 

 

where 𝑔 is air gap length and in this analysis, it is considered constant, 𝐹𝑟(𝛼) is rotor MMF. 

Rotor MMF can be expressed through current sheet function and spatial current 

distribution function [39]: 

 

 𝐹𝑟(𝛼) = ∫ 𝐽𝑟(𝛼)𝐷𝑟(𝛼) 𝑑𝛼 (8) 

 

where 𝐽𝑟 is current sheet function and 𝐷𝑟 is the spatial distribution of the rotor current in the 

slots. 

In this analysis function 𝐽𝑟 is assumed to be sinusoidal: 

 𝐽𝑟(𝛼) = 𝐽𝑅𝑠𝑖𝑛(2𝜋𝑓𝑠𝑡 − 𝑝𝛼 − 𝛼𝑟) (9) 

 

where 𝐽𝑅 is amplitude of current sheet, 𝑓𝑠 is frequency of power supply, 𝑝 is number of pole 

pairs and 𝛼𝑟 is phase angle for rotor current sheet. 

For a healthy motor function 𝐷𝑟 equals one for whole domain: 𝐷𝑟(𝛼) = 1. For the case 

of one broken rotor bar Figure 8 shows the graph of the function  𝐷𝑟(𝛼). 
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Figure 8. Spatial distribution of the rotor current due to broken rotor bar.                                                                                    

Source: S. B. Lee, J. Shin, Y. Park, H. Kim and J. Kim, "Reliable Flux-Based Detection of Induction Motor 

Rotor Faults from the Fifth Rotor Rotational Frequency Sideband," in IEEE Transactions on Industrial 

Electronics, vol. 68, no. 9, pp. 7874-7883, Sept. 2021, doi: 10.1109/TIE.2020.3016241. 

 

 On the graph displayed on the Figure 8 𝑁𝑟 is the number of rotor slots. The absence 

of current due to bar breakage is modelled as 𝐷𝑟(𝛼) = 0 ;  𝛼 ∈ 〈2𝜋𝑘 −
𝜋

𝑁𝑟
, 2𝜋𝑘 +

𝜋

𝑁𝑟
〉. Fourier 

series of the function displayed on Figure 8, [39]: 

 𝐷𝑟 = 1 −
1

𝑁𝑟
+ ∑

2

𝑘𝜋
𝑠𝑖𝑛 (

𝑘𝜋

𝑁𝑟
) 𝑠𝑖𝑛(2𝑘𝜋𝑓𝑟𝑡 − 𝛼)

∞

𝑘=1

 (10) 

 

where 𝑓𝑟 = 𝑛/60 is rotor rotational frequency. 

After inserting equation (8) and equation (9) in equation (7) and performing integration, 

equation for rotor magnetic flux density is obtained [39]: 

 

𝐵𝑅𝑜𝑡𝑜𝑟 =
𝜇0

𝑔
{ 

𝐽𝑅

𝑝
(1 −

1

𝑁𝑟
) 𝑐𝑜𝑠(2𝜋𝑓𝑠𝑡 − 𝛼𝑟) +  

+
𝐽𝑅

𝑝 + 1
∑

1

𝑘𝜋
𝑠𝑖𝑛 (

𝑘𝜋

𝑁𝑟
) 𝑠𝑖𝑛(2𝜋(𝑓𝑠 + 𝑘𝑓𝑟)𝑡 − 𝛼𝑟)

∞

𝑘=1

 

−
𝐽𝑅

𝑝 − 1
∑

1

𝑘𝜋
𝑠𝑖𝑛 (

𝑘𝜋

𝑁𝑟
) 𝑠𝑖𝑛(2𝜋(𝑓𝑠 − 𝑘𝑓𝑟)𝑡 − 𝛼𝑟)

∞

𝑘=1

} 

(11) 

 
 

According to equation (10) frequencies that appear in rotor magnetic flux density due to one 

broken rotor bar are: 

 𝑓𝐵𝑅𝐵 = 𝑓𝑠 ± 𝑘𝑓𝑟  (12) 

 

Frequencies given by equation (11) also appear in stray magnetic flux density. In this thesis the 

sensor for BRB detection is triaxial air coil, i.e., three air coils perpendicular to each other. Each 

coil encompasses stray magnetic flux that induces electromotive force: 
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 𝑒 = −
𝑑𝛹𝑆𝑡𝑟𝑎𝑦

𝑑𝑡
= −𝑁𝐴𝑐𝑜𝑖𝑙

𝑑𝐵𝑆𝑡𝑟𝑎𝑦

𝑑𝑡
= −𝑓(𝑥)𝑁𝐴𝑐𝑜𝑖𝑙 (

𝑑𝐵𝑆𝑡𝑎𝑡𝑜𝑟

𝑑𝑡
+

𝑑𝐵𝑅𝑜𝑡𝑜𝑟

𝑑𝑡
) (13) 

 

where 𝑁 is number of turns and 𝐴𝑐𝑜𝑖𝑙 is surface that is encompassed by the coil. 

According to equation (12) frequencies that appear in rotor magnetic flux density will 

also appear in air coil induced electromotive force. 

If induction motor is considered healthy and perfectly manufactured, meaning there is 

no ecentricty of the rotor, then rotor currents form balanced/symmetrical m phase system. When 

BRB fault occurs system is no longer symmetrical but according to theory of symmetrical 

components, newly form system can be mathematically decomposed to two symmetrical 

systems, direct and inverse system [40]. As the magnetic rotor magnetic field is generated by 

the rotor currents, same applies to rotor magnetic field. Hence, rotor magnetic field for BRB 

fault will be decomposed to direct field, one that is rotating in the direction of stator magnetic 

field and inverse field which is rotating in opposite direction that stator magnetic field. The 

speed of the direct and inverse system: 

𝑑𝑖𝑟𝑒𝑐𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 →  𝑠𝑓𝑠 

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 →  −𝑠𝑓𝑠 

Direct system or direct magnetic field rotates, relative to stator reference frame, with speed: 

 𝑓𝑟 + 𝑠𝑓𝑠 = 𝑓𝑠(1 − 𝑠) + 𝑠𝑓𝑠 = 𝑓𝑠 (14) 

Inverse system or inverse magnetic field rotates, relative to stator reference frame, with speed: 

 𝑓𝑟 − 𝑠𝑓𝑠 = 𝑓𝑠(1 − 𝑠) − 𝑠𝑓𝑠 = 𝑓𝑠 − 2𝑠𝑓𝑠 = (1 − 2𝑠)𝑓𝑠 (15) 

 

This frequency is induced in stator current by the inverse rotor magnetic field and thus 

is reflected in the stator magnetic field and furthermore into stray magnetic field.  

Induced currents in stator conductors with frequency (1 − 2𝑠)𝑓𝑠 produce magnetic field 

that interacts with fundamental magnetic field and as a consequence oscillatory torque on rotor 

is produced with frequency 2𝑠𝑓. Oscillatory torque gives rise to rotor speed ripples of the same 

frequency. Furthermore, speed ripples produce angular variations of the rotor which reflects on 

the phase modulation in the stator flux [36]: 

 

 𝛹𝑀_𝑠𝑐𝑜𝑠 {(𝜔𝑠𝑡 − 𝛼𝑠) −
𝑝𝛥𝑇

𝐽4𝑠2𝜔𝑠
2 𝑠𝑖𝑛(2𝑠𝜔𝑠𝑡 − (𝛼𝑠 − 𝛼1−2𝑠))} (16) 
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where 𝛹𝑀_𝑠 is amplitude of stator magnetic flux, 𝜔𝑠 is angular frequency (𝜔𝑠 = 2𝜋𝑓𝑠), 𝑝 is the 

number of pole pairs, 𝐽 is combined rotor-load inertia, 𝛥𝑇 is the amplitude of the torque 

oscillation, 𝑠 is the slip, 𝛼𝑠 is stator magnetic flux phase angle and 𝛼1−2𝑠 is phase angle of the 

induced stator current 𝑖 = 𝐼𝑐𝑜𝑠((1 − 2𝑠)𝜔𝑠𝑡 − 𝛼1−2𝑠). 

After applying trigonometric identities and Taylor series expansion and taking only the 

first term, the expression is obtained: 

 

𝛹𝑀𝑠
𝑐𝑜𝑠(𝜔𝑠𝑡 − 𝛼𝑠)

+
𝛹𝑀_𝑠

2

𝑝𝛥𝑇

𝐽4𝑠2𝜔𝑠
2

{𝑐𝑜𝑠((1 − 2𝑠)𝜔𝑠𝑡 − 𝛼1−2𝑠) − 𝑐𝑜𝑠((1 + 2𝑠)𝜔𝑠𝑡

− (2𝛼𝑠 − 𝛼1−2𝑠)} 

(17) 

 

The frequency that is also present in stator magnetic flux due to BRB fault is (1 + 2𝑠)𝑓𝑠. 

The rotating magnetic field created by stator current of frequency (1 + 2𝑠)𝑓𝑠 induce in rotor 

conductors current of following frequency: 

 
𝑓𝑠(1 − 𝑠) + 𝑋 = (1 + 2𝑠)𝑓𝑠 

 
𝑋 = 𝑓𝐵𝑅𝐵 = 3𝑠𝑓𝑠 

(18) 

 

This frequency is reflected in rotor magnetic flux and consequently in stray magnetic 

flux. This frequency will also induce new currents in stator conductors which will as a 

consequence have new induced current in rotor. The diagram that illustrates the process of 

frequency component appearance is shown in Figure 9. 

 
Figure 9. Frequency chain – frequency appearance in stator and rotor magnetic field due to broken rotor bar. 

Source: Mazaheri-Tehrani, E. , Faiz, J. : Airgap and stray magnetic flux monitoring techniques for fault 

diagnosis of electrical machines: an overview. IET Electr. Power Appl. 16(3), 277–299 (2022). 

https://doi.org/10.1049/elp2.12157 
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3. LITERATURE REVIEW 

In this section, a brief description of papers related to SCIM broken bar detection using 

stray magnetic flux is given. A common feature of all stated papers is the fixed positions of the 

sensor. The fixed position of the sensor refers to a situation where the sensor is once positioned 

for measuring, and it is not translated or rotated to a new position for a new measurement during 

the overall measurement process. The information about the motor state (healthy/BRB) is 

extracted and processed from the same position of the sensor. There are three standard positions 

of the sensor: axial, radial, and radial–axial. These three positions are a common feature of all 

the following articles. Figure 10 shows the standard positions of the sensors and serves as a 

reference for all articles in this section. 

 
Figure 10. Different fixed sensor positions. 

The articles presented in this section emphasize the fixed sensor position and serve as a 

reference point regarding used methods in this field of research. Together with review articles 

[8], [32], [33] and [34], they provide insight that random sensor positioning during the 

measurement process and its potential for motor state information extraction have not been 

investigated. 

In [41], the authors used a laboratory-made air-core coil as a sensor. The analyzed signal 

was the EMF of the air coil, and the faults were analyzed when the motor was started. Tests 

were also performed on two induction motors and for three positions of the sensor: radial, axial, 

and radial–axial. The short-time Fourier Transform (STFT) was applied to transient EMF 

signals to show the evolution of the fault harmonics. A rotor fault indicator based on the discrete 

wavelet transform (DWT) was introduced. The authors conclude that misalignment and BRB 

can be detected with the STFT of the air coil signal. The current analysis shows that the BRB 

fault can mask the misalignment on the time-frequency map; the rotor fault indicator shows a 

significant difference compared to the healthy motor; different sensor positions give different 

rotor fault indicator values, and the largest difference to the healthy condition is reported for 

the axial position. 
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In [42], the detection of two adjacent broken bars, two broken bars within half a pole pitch, 

and two broken bars with one pole pitch is investigated. The sensor used was an air-core coil. 

The signal was analysed by first performing an STFT with the motor in a steady state and 

extracting the four frequency trajectories. After the trajectories were extracted, the Fast Fourier 

Transform (FFT) was applied. The fault detection is based on the observation of the missing 

frequency component in the frequency spectrum of the healthy motor compared to the fault 

scenarios. The presented method detects broken bars, adjacent and non-adjacent, with half pole 

pitch and with one pole pitch. This method can be used as a complement to Motor Current 

Signal Analysis (MCSA), as the latter provides a false negative misdiagnosis for broken bars 

with half pole pitch and with one pole pitch. 

In [43], authors investigate the of zero-sequence flux method for detection of broken rotor 

bar using stray flux. For this method three air coils are used. The coils are positioned around 

the stator and separated by 120 degrees electrical. The sum of the coil signals is analysed and 

compared to stator current, stray flux and zero-sequance current method. The comparison is 

made by harmonic signature in frequency spectrum. The amplitude of the signature harmonic 

is compared for healthy and BRB state. Zero-sequence flux method gives the highest difference 

in amplitude. 

In [44], the authors propose an algorithm based on a sorted spectrum subtraction of healthy 

and faulty (different spatial combinations of two BRBs) motor states. The algorithm was tested 

for the following combinations of broken bars: 1-2 (adjacent), 1-3, 1-4, 1-5, and 1-6. To 

quantify the distinction between healthy and faulty states, a fault indicator based on 

autocovariance was introduced. For comparison, the authors calculated the ratios of the 

indicators by dividing each indicator for a faulty condition by the indicator for a healthy motor. 

The calculation was performed for axial and radial–axial coil position and the results show 

quantitative differences and different sensitivity depending on the position of the sensor. It is 

reported that the radial–axial position is more sensitive than the axial position. 

In [45], the detection of a broken bar is investigated using two indicators. The first is based 

on the frequency domain and is calculated as the sum of the average of the absolute values of 

the bispectrum; the second indicator is based on the time domain and is calculated as the squared 

value of the median of the autocorrelation function. The tests were carried out during start-up 

and in a steady state. An air-core coil was used as the sensor. The measurements with the coil 

were carried out in four positions: radial, axial, and radial–axial (P1 and P4). When analyzing 

the frequency and time indicators for the steady state, it is noticeable that all faulty values are 
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lower than in the healthy state, with the exception of sensor position P4 in both cases. The faulty 

value of the frequency indicator for the start-up regime has a higher value than the value for the 

healthy state. The values of the time indicator for the start-up process show that all faulty values 

are lower than the values in the healthy state, with the exception of position P2. 

In [46], the authors investigate the two-stage time-frequency analysis for detecting broken 

bars in a steady state. The authors use STFT with Kaiser–Bessel window function. The 

expression for the minimum window length is derived in the paper. The two-stage analysis was 

used to study the 5th and 7th harmonics and their sidebands. The conclusion of the paper is that 

broken rotor bars can be detected with the SFTF at a steady state and with the minimum window 

length derived in the paper. 

In [47], the authors investigated the influence of the axial air channels of the rotor on the 

detection of broken rotor bars. The motivation for this research was the misdiagnosis of the 

MCSA method. If the number of axial channels is equal to the number of poles, the MCSA can 

generate a false positive or false negative alarm. The motor was tested with 0, 1, and 2 (adjacent) 

broken bars. The sensor used was an air-core coil placed in a radial position. The stator current 

and the radial flux (EMF of the coil) were measured for comparison. FFT was used for signal 

analysis, and the spectral component (1-2s)f was analyzed. The work showed that the detection 

of rotor fracture is independent of the presence of an axial channel when magnetic stray flux 

analysis is applied. 

In [48], the authors propose a method for automatic detection of a BRB based on a multiple 

signal classification algorithm (MUSIC) and an artificial neural network (ANN). An air coil 

was used as the sensor for the measurement of magnetic stray flux. The success rate achieved 

with the proposed algorithm in detecting BRB faults show the potential for autonomous fault 

detection based on stray magnetic flux. 

In [49], the authors proposed a method for the automatic detection of broken rotor bars, 

misalignment, and combinations: BRB + misalignment. The proposed method is based on 

STFT, statistical parameters, feature extraction, linear discriminant analysis (LDA), 

dimensionality reduction, and feed-forward neural network (FFNN). The sensor used was a 

triaxial stray flux sensor. The triaxial sensor consists of three Hall sensors whose axes are 

perpendicular to each other, and which are all installed on one circuit board. They are arranged 

so that one sensor detects the axial flux, the second the radial flux, and the third the radial–axial 

flux. The proposed algorithm can automatically detect the healthy state, misalignment, and 
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Misal. + 1 BRB and Misal. + 2 BRB. For all states, the authors report that the effectiveness is 

more than 95%. 

In [50], the authors investigated the detection of a BRB by monitoring the rotor rotational 

frequency and the supply frequency sidebands. The authors investigated one BRB, two BRBs 

(adjacent), and two non-adjacent BRBs separated by 90° (electrically). The faults were 

investigated using three methods: MCSA, the internal magnetic flux (air gap), and stray 

magnetic flux. For the stray magnetic flux method, an air-core coil in the radial–axial position 

was used. The magnetic stray flux in the steady state and the fs − fr frequency component, 

where fs is supply and fr is the rotor rotational frequency, can be used to identify all faulty 

conditions. The FFT and STFT analysis of the fs − fr frequency component showed that the 

internal magnetic flux can detect all faulty states. The authors also showed in experiments that 

the fs − fr frequency component of the internal and external magnetic flux does not respond to 

an unbalanced load. 

In [51], the authors investigated the effects of a BRB on the mechanical frequencies. An 

air coil with a square cross-section mounted on the fan cover of the motor in a radial–axial 

position (P1) is used as a sensor. The motor current was measured for comparison. The 

measurements were carried out at the rated load of the motor. The analysis of the mechanical 

frequencies in the steady state to detect rotor faults shows diagnostic potential. 

In [39], the authors proposed the fifth harmonic of the rotor rotational frequency as an 

indicator of rotor faults in induction motors: fs + 5fr. The fifth harmonic was chosen because it 

does not contain sidebands that cause false indications and has a low sensitivity. Stray flux 

analysis of the fs + 5fr component shows that all faulty states (one BRB and two BRB—

adjacent and non-adjacent) are detectable compared to the spectrum of the healthy state and the 

defined threshold: −66.4 dB. The proposed indicator is immune to the presence of an axial air 

channel. The indicator is not affected by an unbalanced load and misalignment. 

A diagnostic study conducted under real conditions is described in [52]. The diagnosis 

took place in a pumping station. There was no prior knowledge of the parameters of the 

mechanical system. The diagnosis was performed with MCSA, stray flux, and vibration 

analysis with the motors in a steady state. The flux was monitored with two air coils in the 

radial–axial position (P1). The work shows that the stray flux is not sensitive to mechanical 

faults originating from the load. A second method was required to localize the fault (the pump 

system studied is a complex electromechanical system—vertically mounted SCIM, impeller, 
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15 m shaft, and 6 bearings). In this example, one method alone cannot provide complete 

screening (fault detection and fault localization). 

In [53], fault detection with stray flux in motors with soft starting is investigated. Four soft 

starters were used. The signals of the air coils were determined for the radial, axial, and radial–

axial positions in the steady state and start-up condition. The steady-state signals were analyzed 

with FFT, and the start-up signals with STFT. The variables in the tests were the time setting 

and the initial torque/current setting. The faults investigated were as follows: one BRB without 

load and with load and two BRBs (adjacent) without load and with load. The authors proposed 

the following fault indicator: the highest value of the sf component from the STFT analysis. 

Broken rotor bars can be detected when the motor is operated with a soft starter. The transient 

stray flux, together with the steady-state stray flux, provides reliable information about the rotor 

fault. 

In [54], an automatic diagnostic system based on stray flux and current data is investigated. 

The diagnostic system consists of the following steps: (1) stray flux and stator current data at 

start-up, (2) STFT application, (3) division of the STFT map into regions and calculation of a 

proposed indicator for each region, (4) classification of the condition (healthy, one BRB, two 

BRB, misalignment) by FFNN, and (5) final diagnosis for the end user via a user interface. The 

sensor used for stray flux was a triaxial sensor consisting of three Hall sensors on a board 

arranged perpendicular to each other. The results show 100% effectiveness in detecting two 

BRBs, 100% effectiveness in detecting one BRB, 95% effectiveness in detecting misalignment, 

and 100% effectiveness in detecting a healthy motor. 

In [55], the possibility of monitoring the tool condition in a CNC machine is investigated. 

The monitored object was a cutting tool. The idea was to monitor the wear of the cutting tool 

indirectly by monitoring the stray flux of the spindle motor. The proposed method for tool wear 

estimation consists of the following steps: (1) Data acquisition from triaxial sensors (3 

perpendicular Hall sensors on a board) (2) DWT analysis of each obtained signal (3) Calculation 

of indicator γDWT (4) Classification of cutting tool wear based on indicator γDWT and depth 

of cut using FFNN. The proposed method is effective for the automatic classification of tool 

wear conditions. 

In [56], the automatic detection of BRB faults in SCIM with soft start is investigated. The 

detection is tested with four different soft starters. The detection is based on current and stray 

flux signals. The proposed method for automatic detection consists of the following steps: (1) 
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acquiring current and stray flux signals, (2) applying STFT, (3) dividing the STFT map into a 

grid of m rows by n columns and calculating the proposed indicator for each region of the map, 

(4) feature reduction by applying LDA, (5) automatic classification based on FFNN. With the 

proposed method, automatic detection of BRB faults during soft start is possible. An overall 

efficiency of 94.4% is achieved. 

In [57], the automatic detection of BRB faults in SCIM with soft start is investigated. The 

detection is tested with four different soft starters. The detection is based on stray flux signals 

obtained from the air coil in the radial–axial position (P1). The proposed method for automatic 

detection consists of the following steps: (1) acquisition of the transient stray flux signal, (2) 

addition of white Gaussian noise to the signal, (3) application of the persistence spectrum 

method, (4) adaptation of the images, (5) application of the convolutional neural network. An 

accuracy rate of 99.89% was achieved. 

In [58], the author proposed a method for detecting multiple faults in IM under periodic 

low-frequency fluctuating loads. In the study, the following conditions are investigated 

individually: healthy, partially broken bar, one broken bar, eccentricity due to unbalance, and 

eccentricity due to misalignment. The proposed method consists of the following steps: (1) data 

acquisition, (2) feature extraction (time domain), (3) application of Self-Organizing Maps, (4) 

feature reduction by linear discriminant analysis, (5) application of a neural network classifier. 

A triaxial sensor was used for data acquisition. The sensor itself is fixed to the frame and 

consists of Hall-effect transducers that measure axial, radial, and axial–radial flux. The authors 

report global classification rates of approximately 99.5% and 99% during training and testing, 

respectively. 

Table 1 summarizes the articles from this section. 

Table 1. Summary of literature review. 

Reference 
Sensor Position 

(Ref. to Figure 10) 

Sensor—Type and 

Dimensions 

Fault Detection 

Method 
Analysed Fault 

Tested SCIM Rated Power/ 

Facility/Motor Supply 

[36] P1, P2, P3 

Circular coil; N = 1000;  

Inner φ = 3.9 cm; Outer φ = 8 cm; 

Height 1 cm 

STFT 

DWT 

Misalignment 

Misal. + 1 BRB 

Misal. + 2 BRB  

(adjacent) 

M1: 1.1 kW 

M2: 0.75 kW Lab. 

Start-up 

Line supply 

[37] P1 

Circular coil; N =1000 

Inner φ = 3.9 cm 

Outer φ = 8 cm 

Height 1 cm 

STFT  

FFT 

2 BRB (adjacent, half pole pitch 

and one pole pitch) 

M: 1.1 kW 

Lab. 

Steady state 

Line supply 

[38] 
P1,P1,P1 separated by 120 

degrees electrical 

Square-body; N =1500 

Inner body dim. 40x40 mm2 

Outer body dim. 55x55 mm2 

Height 0.8 cm 

FFT 1 BRB 

M: 4 kW 

Lab. 

Steady state 

Line supply 

[39] P1, P2 

Circular coil; N =1000 

Inner φ = 3.9 cm 

Outer φ = 8 cm 

Height 1 cm 

FFT 

Spectral subtraction 

Autocorrelation 

2 BRB (5 combinations) 

M: 1.1 kW 

Lab. 

Steady state 

Line supply 

https://www.mdpi.com/1424-8220/24/10/3080#table_body_display_sensors-24-03080-t001
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[40] P1, P2, P3, P4 

Circular coil; N =1000 

Inner φ = 3.9 cm 

Outer φ = 8 cm 

Height 1 cm 

Bispectrum 

Autocorrelation 
1 BRB 

M: 1.1 kW 

Lab. 

Steady state 

And Start-up  

Line supply 

[41] P1 

Circular coil 

Nc =1000 

Inner φ = 3.9 cm 

Outer φ = 8 cm 

Height 1 cm 

STFT 
1 BRB 

2 BRB (adjacent) 

M: 1.1 kW 

Lab. 

Steady state 

Line supply 

[42] P1 

Helmholtz coil 

Nc =320 

Inner φ = 121 cm 

Outer φ = 155 cm 

FFT 
1 BRB 

2 BRB  

M1:5.5 kW   

Lab. 

Steady state 

Line supply 

M2,3: 280 kW, 6.6 kV, 

Field test 

Steady state; Line supply 

[43] P1, P2, P3 

Circular coil 

Nc =1000 

Inner φ = 3.9 cm 

Outer φ = 8 cm 

Height 1 cm 

MUSIC 

FFNN 

1 BRB 

2 BRB 

M1: 1.1 kW 

M2: 7.5 kW Lab. 

Start-up 

Line supply 

[44] P1, P2  

Triaxial stray flux sensor 

Three hall sensors perpendicular 

axis to each other 

Allegro—A1325 

STFT  

Statistical parameters  

LDA dimensionality 

reduction 

FFNN 

Misalignment 

Misal. + 1 BRB 

Misal. + 2 BRB (adjacent) 

M:0.74 kW 

Lab. 

Start-up 

Line supply 

[45] P1 
Circular coil 

Nc = 320 

FFT 

STFT 

1 BRB 

2 BRB 

(adjacent) 

2 BRB 

(non-adjacent; 90° el. apart) 

M: 7.5 hp 

Lab. 

Start-up and steady state 

Line supply 

[46] P1 

Square body 

Nc = 1500 

copper wire φ = 0.1 mm 

Inner square length 40 mm 

Outer square length 50 mm 

Height 4.5 mm 

FFT 1 BRB 

M:4 kW 

Lab. 

Steady state 

Line supply 

[47] P1 
Circular coil 

Nc =300 (as stated in text) 
FFT 

1 BRB 

2 BRB adjacent 

2 BRB non-adjacent 

Load unbalance 

Misalignment 

Eccentricity 

M1:7.5 kW 

M2: 5.5 kW 

M3: 2.0 kW 

M4: 5.5 kW 

Lab. 

Steady state 

Line supply 

[48] P1 

Square body 

Nc = 3500 

Inner square length 40 mm 

Outer square length 50 mm 

Height 4.5 mm 

FFT 

Misalignment 

Eccentricity 

Bearing fault 

M1:750 kW 

M2: 750 kW 

M3: 240 kW 

M4: 240 kW 

Field testing 

Steady state 

Line supply 

[49] P1, P2, P3 

Circular coil 

Nc =1000 

Inner φ = 65 mm 

Outer φ = 80 mm 

Height 15 mm 

FFT 

STFT 

1 BRB 

2 BRB (adjacent) 

M: 1.1 kW 

Lab. 

Start-up and steady state 

4 soft-starters 

[50] P1 

Triaxial stray flux sensor 

Three perpendicular hall-effect 

sensors  

STFT 

FFNN 

1 BRB 

2 BRB (adjacent) 

Misalignment  

M1: 1 hp 

M2: 1.47 hp 

Lab. 

Start-up 

Line supply 

[51] P1 

Triaxial stray flux sensor 

Three hall sensors mounted 

perpendicular on a PCB board 

DWT 

FFNN 
Cutting tool wear evaluation 

M1: 3.7 kW 

Line supply 

[52] P1 

The text description of the coil 

does not match the coil presented 

in the paper  

STFT 

LDA 

FFNN 

1 BRB  

2 BRB (adjacent) 

M: 1.1 kW 

Lab. 

Start-up and steady-state 

4 soft-starters 

[53] P1 

Circular coil 

Nc =1000 

Inner φ = 6.5 cm 

Outer φ = 8 cm 

Height 1.5 cm 

Persistence spectrum 

CNN 

1 BRB  

2 BRB (adjacent) 

M: 1.1 kW 

Lab. 

Start-up and steady-state 

4 soft-starters 

[53] P1 

Triaxial stray flux sensor 

Three perpendicular hall-effect 

sensors  

Self-Organizing Maps 

NN 

1/2 BRB  

1 BRB 

Unbalance  

Misalignment 

M: 1.5 kW 

Lab. 

Fluctuating load 

VFD supply 
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4. THESIS SCIENTIFIC CONTRIBUTION AND RESEARCH PLAN 

 

The development of a portable triaxial air coil for magnetic stray flux is expected to enable 

measurement of a broken rotor bar by placing sensors on random position across induction 

motor surface. Furthermore, the dissertation reasearch plan is: 

 

- Research on the technical aspects of the triaxial air coil sensor 

- Research on the development of a triaxial air coil sensor and definition of a test bench  

- Use of a triaxial air coil for flexible stray flux measurement on a three-phase induction 

motor in steady state condition 

- Analysis of the obtained data for stray flux detection 

 

Therefore, based on a reasearch object the working hypotesis is: 

A portable triaxial air core stray flux sensor can be developed to reliably detect broken 

rotor bars of a squirrel cage induction motor at steady state.  

 

From the defined hypothesis, the main dissertation scientific contribution is: 

- Reliable measurement and detection of a broken rotor bar based on stray flux 

measurement in three axes 

- Flexible detection of broken rotor bar of a three-phase induction motor in a steady state 
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5. MATERIALS AND METHODS 

This section describes the triaxial air coil, the test objects, the test setup and the research 

methodology. The geometry, materials and dimensions of the triaxial air-core coil are 

presented. The test objects and their technical parameters are presented. The simulation of a 

broken rotor bar and the experimental setup (position of the test objects in the laboratory, power 

supply and measuring equipment) are also presented. The methodology for three approaches, 

the statistical, the characteristic and the FFT analysis, is presented. 

5.1. Triaxial air coil 

The reason why triaxial air coil is chosen instead of single air coil sensor is that triaxial coil at 

the same time encompasses a portion of each stray flux component: radial, axial and radial-

axial component. Another view is that for the same number of positions on the motor, with 

triaxial sensor 3 times more signals can be logged at the same time. 

The triaxial air coil consists of three copper coils that are perpendicular to each other. Each coil 

was wound up by hand and has 500 turns. The nominal diameter of the single-coated enamelled 

wire was 0.2 mm. The body for the triaxial coils was designed in Autodesk Inventor 

Professional and 3D printed using UltiMaker S5. The material used for the body was PLA (infill 

density 100 %). Copper wire data is shown in Figure 11a and PLA filament data is shown in 

Figure 11b. 

  
(a) (b) 

Figure 11. (a) Copper wire data; (b) PLA filament data. 

Resistance and inductance of each coil were measured with HAMEG Milliohm-Meter HM 8014 

and HAMEG LC-Meter 8018. The results are as follows: Coil 1: 43.3 Ω, 14.5 mH, Coil 2: 42.0 

Ω, 13.3 mH, Coil 3:  44.1 Ω, 15.5 mH. The model with the dimensions of the body, cross-

section of the model and the finished triaxial sensor is shown in Figure 12. 
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(a) (b) (c) 

Figure 12. Triaxial sensor: (a) Technical drawing of the sensor body; (b) cross section of the sensor body;                  

(c) photograph of the finished sensor. 

 

5.2. Test objects – Induction motors 

The test objects are four, three-phase, totally enclosed, fan-cooled (TEFC) SCIMs. Figure 13 

shows the photograph of the test objects. They are divided into two groups, Siemens motors 

and Končar motors. Within each group the motors have the same characteristics. Technical 

characteristics of the motors are shown in Table 2. 

 
Figure 13. Test objects: two Končar motors and two Siemens motors. 

Table 2. Technical characteristics of Siemens and Končar motors. 

Manufacturer  Siemens Končar 

Type  1AV3082B H5AZ 71B-2 

Voltage (Y) [V] 400 400 

Frequency [Hz] 50 50 

Power [kW] 0.55 0.55 

Current [A] 1.26 1.4 

Power factor [ ] 0.78 0.72 

Speed [rpm] 1440 2790 

Efficiency class  IE3 IE3 

Efficiency [%] 80.8 77.8 

Mounting position  B3 B3 

Mass [kg] 11 5.9 
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5.3. Experimental setup 

Experimental setup consists of a triaxial sensor, a data logger, a laptop, a servo machine test 

system (control module and servo-motor), power supply module and test objects. Figure 14 

shows the experimental setup. 

 

Figure 14. Experimental setup – power supply module, control module, servo motor, test object, laptop, data 

logger and triaxial sensor. 

The data logger used was National Instruments, model USB-6003, and the laptop was Acer 

Aspire 5, model N20C5 -  (11th Gen Intel(R) Core (TM) i5-1135G7 @ 2.40 GHz; 2.42 GHz. 

Data was recorded using the MATLAB (R2020b) Analog Input Recorder application. The 

duration of measurement was set to 20 s, and the sampling frequency to 5 kHz. Three channels 

were used: ai0, ai1, and ai2. After setting the duration, sampling frequency and selecting three 

channels, the application automatically resets the sampling frequency to 5000.3125 Hz and the 

number of samples per measurement to 100006.  

The servo machine test system from the manufacturer Lucas-Nuelle consists of the control 

module and the servo motor (manufacturer Lenze; type MCA13l41). The type of the test system 
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is CO3636-6V. The servo motor was used as a brake/load, and the control module was used to 

set the load torque to a constant value for each measurement. Control module displays the 

torque value and the rotational speed.   

Končar motors throughout the experiment had metal couplings. Siemens motors throughout the 

experiment had plastic couplings designed in Autodesk Inventor Professional and 3D printed 

using UltiMaker S5. The material used for plastic coupling was ABS (φ 2.85 mm, infill density 

100%). Throughout the experiment Siemens motors were mounted on hollow metal supports 

and fixed to the table with three clamps. Clamps were positioned approximately on the same 

positions for each Siemens motor. When the first Siemens IM was placed, the position of the 

hollow beams was marked on the table. Figure 15a shows the mounting and the positioning of 

the servo and Siemens motor during experiment, Figures 15b and 15c show the up-close view 

of the clamps and their position. 

   
(a) (b) (c) 

Figure 15. (a) Mounting and positioning of servo and Siemens motor; (b) Up-close view from the non-drive 

end; (c) Up-close view from non-drive end, right side. 

Končar motors due to their size and shaft height were mounted on platforms that are compatible 

with servo motor platform. Two clamps were used for Končar motor table fixation. Figure 16a 

shows the mounting and positioning of servo and Končar motor and Figure 16b shows the view 

from non-drive end. 

  
(a) (b) 

Figure 16. (a) Mounting and positioning of servo and Končar motor; (b) View from the non-drive end. 
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Broken rotor bar fault is created by drilling a hole into a rotor bar. The diameter of the hole for 

Siemens motor is 4 mm, and for Končar motor is 3 mm. Due to lack of information about rotor 

bar shape and dimensions the drilling was first conducted with 2 mm diameter drill bit. The 

criterium for hole diameter was visual conformation of rotor bar breakage which resulted in 4 

mm and 3 mm for Siemens and Končar respectively. Figure 17a shows Siemens rotor with 

drilled rotor bar and Figure 17b show Končar rotor with drilled rotor bar. 

  
(a) (b) 

Figure 17. Artificially generated broken rotor bar fault: (a) Siemens rotor – 4 mm in diameter; (b) Končar rotor 

– 3 mm in diameter. 

The hypothesis of the dissertation states that random positioning approach can be used to extract 

the information about motor health state. Random positioning implies the random position of 

the sensor center and random orientation of the sensor near motor surface. With random 

position approach, the sensor can be placed in infinitely many positions. One could, e.g., fix the 

center of the sensor in one point of space and rotate it arbitrarily in infinitely many ways or one 

could, e.g., fix the orientation of sensor (coordinated system of the senor relative to some 

referent coordinate system) and translate it in infinitely many ways. This means that every 

experimenter can have finite and unique set of measurements. To make the experiment 

repeatable as much as possible, four guidelines for sensor positioning are given: 

1. At least one vertex of the sensor must always be in contact with the IM, 

2. Divide the IM into 5 areas—left, right and upper area, drive end and non-drive end 

(plastic fan cap) 

3. Change the area after each measurement 

4. Position the sensor randomly in the given area. 
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Division of the motor into 5 area is shown in Figure 18. Because of the mounting type (B3), 

bottom part, between the mounting feet is excluded from the measurement. Also placing the 

sensor on the terminal box (on the cap) is excluded. 

 
Figure 18. One of four guidelines for sensor positioning - division of the motor in 5 areas: left, right, upper 

(yellow), drive end (green) and non-drive end (blue) area.                                                                                     

IM 3D model source: https://mall.industry.siemens.com/mall/en/mx/Catalog/Product/1LE10030DB222AA4 

An examples of random sensor positions are shown in Figure 19. 

 
Figure 19. Examples of sensor positions: (a) drive end; (b) left area; (c) non-drive end; (d) upper area; (e) left 

area. 

The labeling of the motors was done in the following way: one of the motors from the group 

that was kept healthy throughout the experiment was labeled as IM1; second motor while it was 

kept healthy, was labeled IM2_H and after the artificialy generated broken bar fault it was 

labeled IM2_BRB1.  
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5.4. Methods 

Experiment consists of two parts. First part is validation of the measurement process and second 

part is detection of broken rotor fault.  

Validation of measurement process implies consistent information extraction with traixial coil 

using random positioning approach. Consistent information extraction means that when series 

of measurements is conducted, e.g., on healthy motor, then obtained data, quantitatively must 

provide information that there is no difference within series of measurements. If experiment 

shows that there is quantitavly difference within series of measurement conducted on the motor 

with unchanged motor health state, then information extraction with triaxial coil and random 

positioning approach is not valid since it would give different information for the same 

(unchanged) motor state.   

Detection of broken rotor fault implies that analysis of two data sets, one obtained for healthy 

and other for faulty motor, must quantitatively show difference between two data sets.  

One measurement implies one random position of the sensor and data logging of the signals at 

that position. The physical quantity measured is the induced electromotive force (emf) of each 

coil. All measurements were taken after the motors have reached a steady state, while being 

line-fed without control applied to startup. 

To prove the hypothesis of this dissertation, i.e, to prove that triaxial air core stray flux sensor 

can be developed to reliably detect broken rotor bars of a squirrel cage induction motor at steady 

state, three approaches are applied to obtained data: raw data analysis, feature analysis and FFT 

analysis. Since hypothesis does not state the method, the criterium for positive outcome is that 

any of mentioned approaches provide reliable BRB detection.  

Validation of measurement process based on raw data was design in the following way, for 

each motor and motor state 100 measurements per day were taken during period of 10 days. 

First set of measurements was conducted on healthy Siemens motor labeled as IM1. Second set 

was conducted on healthy Siemens motor labeled as IM2_H and third set was conducted on 

faulty Siemens motor labeled the IM2_BRB1. Same procedure of measurement apply to Končar 

motors. Overall, 3000 measurements for Siemens group and 3000 measuremetns for Končar 

group. 

5.4.1. Statistical Analysis 

The method for validation of measurement process based on raw data is statistical analysis. 
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First step of the analysis is to determine whether data follows parametric or non-parametric 

distribution. This is performed with quantitative statistical tests for normality available in 

MATLAB (R2020b) and graphical test, quanatile-quantile plot. Based on the outcome of the 

normality test, appropriate statistical tests are applied to the series of data grouped by variable 

„day“: day1, day2, day3,..., day10. After the statistical test is conducted, for the purpose of 

validation of measurement process, multiple comparison analysis is applied. If the multiple 

comparison analysis shows that there is no statistical significant difference between each day 

combination (day 1 – day 2, day 1 – day 3, ..., day 9 – day 10) then measurement process is 

considered valid.   

The method for broken rotor detection based on raw data is statistical analysis. Data for this 

analysis is grouped by the variable “motor”: IM1, IM2_H, IM2_BRB1. 

For validation of measurement process each “day” variable contains 100 measurements. For 

broken rotor detection each “day” variable contains 300 measurements. Taking into account the 

number of data logging samples per measurement (100006 samples) data table for validation 

of measurement has dimensions 10000600 x 10. Data table for broken rotor bar detection has 

dimensions 30001800 x 10. Organization of data within data table is shown in Figure 20. 

 

Figure 20. Data organization for raw data analysis: (a) validation of measurement process; (b) detection of 

broken rotor bar. 
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5.4.2. Feature Analysis 

Feature analysis is performed with time-domain features. There are many time-domain features 

that can be chosen. Based on the articles that investigate fault detection in IMs [59], [60], [61], 

[62], [49] and [63] in this research 19 time-domain features have been chosen for BRB detection 

investigation. Chosen time-domain features and their equations are shown in Table 3. 

 

Table 3. Time-domain features. 

No. Feature Equation No. Feature Equation 

1 Energy ∑|𝑥𝑖|2

𝑁

𝑖=1

 11 Peak-to-peak max
𝑖

(𝑥𝑖) − min
𝑖

(𝑥𝑖) 

2 Mean 𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 12 Peak-to-rms 
max

𝑖
(𝑥𝑖)

𝑟𝑚𝑠
 

3 Standard deviation 𝜎 = √
1

𝑁 − 1
∑|𝑥𝑖 − 𝜇|2

𝑁

𝑖=1

 13 Shape factor 
rms

1
N

∑ |xi|
N
i=1

 

4 Variance 
1

𝑁 − 1
∑|𝑥𝑖 − 𝜇|2

𝑁

𝑖=1

 14 Impulse factor 

max
𝑖

|xi|

1
N

∑ |xi|
N
i=1

 

5 Median 
1

2
(𝑋 [

𝑁

2
] + 𝑋 [

𝑁

2
+ 1]) 15 Clearance factor 

max
𝑖

|xi|

(
1
N

∑ √|xi|
N
i=1 )

2 

6 Kurtosis 
1

𝑁
∑ (

𝑥𝑖 − 𝜇

𝜎
)

4
𝑁

𝑖=1

 16 Harmonic mean 

𝑁

∑
1
𝑥𝑖

𝑁
𝑖=1

 

7 Skewness 
1

𝑁
∑ (

𝑥𝑖 − 𝜇

𝜎
)

3
𝑁

𝑖=1

 17 
Fifth central 

moment 

1

𝑁
∑(𝑥𝑖 − 𝜇)5

𝑁

𝑖=1

 

8 Root mean square 𝑟𝑚𝑠 = √
1

𝑁
∑|𝑥𝑖|2

𝑁

𝑖=1

 18 
Sixth central 

moment 

1

𝑁
∑(𝑥𝑖 − 𝜇)6

𝑁

𝑖=1

 

9 
Root sum of 

squares 
𝑟𝑠𝑠𝑞 = √∑|𝑥𝑖|2

𝑁

𝑖=1

 19 Waveform length ∑|𝑥𝑖+1 − 𝑥𝑖|

𝑁−1

𝑖=1

 

10 Interquartile range 𝑋 [
3

4
(𝑁 + 1)] − 𝑋 [

1

4
(𝑁 + 1)]    

𝑋 − 𝑠𝑜𝑟𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) 
𝑁 −  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 

For each measurement all three emf signals from triaxial coil were added to form one single 

measurement matrix with dimensions 100006 x 1000. This matrix is the input for two nested 

loops. Inner for-loop has 100 iterations and outer for-loop has 30 iterations. Numbers 100 and 

30 are chosen empirically. At each beginning of the inner for-loop measurement matrix columns 

are randomly shuffled. The reason for shuffling is to avoid any bias during measurement since 

the measurement itself was done by one person. Afterwards, for each column of the matrix all 

time-domain features were calculated. For each feature, matrix was formed such that columns 
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of the matrix represent motors IM1, IM2_H and IM2_BRB1 respectively and rows represent 

calculated features. Dimensions of the matrix are 1000 x 3. Newly formed matrix is an input 

for Friedman test. The assumption is that each calculated series of features come from non-

parametric distribution, i.e., data distribution is not tested for normality. After Friedman test, 

multiple compare function was used to calculate p-value for each motor combination.  This 

procedure was repeated in „for“ loop 100 times and the results of the loop is the number of 

appearances of the feature that satisfies the condition: pIM1-IM2_H > 0.05, pIM1-IM2_BRB1 < 0.05, 

pIM2_H-IM2_BRB1 < 0.05. The whole procedure, from column shuffling is repeated 30 times. At the 

end of each iteration, number of appearances of the features is saved and thus forming result 

matrix with dimensions 20 x 30. From this matrix mean value and standard deviation is 

calculated for each feature.   

Described procedure is show in the form of flowchart in Figure 21.  

 

Figure 21. Flowchart for BRB feature analysis based on 1000 measurements. 

After feature analysis based on 1000 measurements is conducted, broken rotor bar detection is 

investigated for different number of measurements. The analysis for different number of 
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measurements is conducted as follows: all three emf signals from triaxial coil were added to 

form one single measurement matrix with dimensions 100006 x 1000; this matrix is the input 

for two nested loops; inner for-loop has 100 iterations and outer for-loop has 50 iterations; fifty 

iterations of outer loop correspond to vector length of chosen number of measurements (nm), 

nm=20, 40 , 60, …, 980, 1000; for each nm 100 iterations is executed; in each iteration of the 

inner loop number of measurements, nm, is randomly taken from measurement matrix; 

randomization is achieved by random shuffling of the measurement matrix columns at the 

beginning of the each iteration of the inner loop; after randomly taken number of measurements, 

calculation of feature follows and the formation of feature matrix (nm x 3); feature matrix is 

input for Friedman test after which multiple comparison is applied; as a result for each feature 

it is counted how many times (out of 100) the condition pIM1-IM2_H > 0.05, pIM1-IM2_BRB1 < 0.05, 

pIM2_H-IM2_BRB1 < 0.05 is meet. 

 The flowchart of feature analysis for different number of measurements is shown in Figure 22.  

 
Figure 22. Flowchart of feature analysis for different number of measurements. 
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5.4.3. FFT Analysis 

Classical approach to broken rotor bar detection is application of Fast Fourier Transform (FFT) 

to measured signals, whether they are electrical current, vibration, sound or stray magnetic flux 

signals. When dealing with stray magnetic flux signal standard indicators of the BRB fault are 

following frequency components [38][64]: 

𝑠𝑓𝑠 (19) 

3𝑠𝑓𝑠 (20) 

(1 ± 2𝑘𝑠)𝑓𝑠 (21) 

(
𝑘

𝑝
(1 − 𝑠) ± 𝑠) 𝑓𝑠 (22) 

where 𝑠 is the slip of IM, 𝑓𝑠 is supply frequency, p is the number of pole pairs and k is the 

integer k=1, 2, 3, … 

Broken rotor bar detection based on FFT requires the knowledge of healthy motor frequency 

spectrum. Then amplitudes of the frequency components and their frequency shift due to change 

in speed are compared to motor under test. If the motor under test has broken rotor bar it is 

expected that amplitudes of components defined by Eq.19, 20 and 21 have higher values that 

for the healthy motor.  

After FFT analysis based on 1000 measurements is conducted, the influence of number of 

measurements is investigated. For each frequency component that is identified as BRB indicator 

following procedure is conducted: determine the frequency interval that encompasses 

frequency component of interest, measurement matrix for each motor is formed by adding 

frequency spectrum of each coil, set the number of measurements, 100 times randomly take the 

chosen number of measurements of each motor, for each iteration save the value of amplitude 

for each motor, count the how many time amplitude of IM2_BRB1 has higher value than IM1 

and IM2_H, save count, repeat whole process 30 times, calculated the mean and standard 

deviation of count based on 30 iterations, execute the process from beginning for new frequency 

component. Flowchart of the process is shown in Figure 23.  
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Figure 23. Flowchart for the number of measurements influence based on BRB indicator frequency components. 

The final number of measurements in research is set based on results of Siemens or Končar 

group. Which group achieves positive results with smaller number of measurement, that group 

will be regarded as referent group.   

In this dissertation, data analysis will first be conducted and presented for Siemens group. After, 

the whole process will be repeated and presented for Končar group. 

 

6. RESULTS 

In this section the results of the applied methods are first shown for Siemens group and then 

for Končar group. The order of the presented results is statistical analysis, feature analysis and 

FFT analysis, respectively. After all results are presented for both motor groups, comparison 

of the Siemens and Končar results by the method is presented. 

6.1. Siemens – Statistical Analysis 

The raw data visualization for each motor, each motor state and each day is shown with 

histograms in Figure 24. The histogram of each day contains all data values obtained with the 

data logger for all three coils. The number of bins chosen to represent the histogram is 100. 

This number of bins was chosen for visualization purposes only, i.e., to show 10 histograms in 

one figure that can be visually distinguished. The visualization is not intended to draw 

conclusions about the data distribution. 
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(a) (b) (c) 

Figure 24. Siemens group - raw data visualization for each day: (a) IM1; (b) IM2_H; (c) IM2_BRB1; Number 

of bins for all histograms is 100. 

To determine the statistical method for daily data comparison, i.e., which tests to use, 

parametric or non-parametric, the data must be examined for normality. There are two 

approaches to data testing, numerical tests, and graphical interpretation [65]. As stated in [66], 

there are 55 tests for normality, but in this study, only the tests implemented in MATLAB 

R2020b are used, i.e., One-sample Kolmogorov–Smirnov, Anderson–Darling, and Jarque–Bera 

and Lilliefors test. 

When dealing with a large number of samples, normality tests may detect minimal deviations 

from normality as significant. Therefore, graphical methods can be a helpful tool for normality 

decisions [65]. In this paper, a graphical method, the quantile-quantile (Q-Q) plot, is used. The 

results of the normality tests obtained from MATLAB R2020b are shown in Table 4. 

 

Table 4. Siemens group - results of the normality tests. 

Test Motor 
p-value 

day 1 day 2 day 3 day 4 day 5 day 6 day 7 day 8 day 9 day 10 

One-sample Kolmogorov–

Smirnov  

IM1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_H <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_BRB1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Anderson-Darling 

IM1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_H <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_BRB1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Jarque-Bera 

IM1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_H <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_BRB1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Lilliefors 

IM1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_H <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_BRB1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 

The results from Table 4 show that the p-value for every motor, motor state and day is less than 

0.001, which means the rejection of the null hypothesis that the data come from a normal 

distribution.  

The Q-Q plot for each motor, motor state, and day is shown in Figure 25. 
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(a) 

 
(b) 

 
(c) 

Figure 25. Siemens group - Quantile-Quantile plot for each day: (a) IM1; (b) IM2_H; (c) IM2_BRB1. 

The Q-Q plot in Figure 25a shows deviations from the normality line, but not to the extent that 

suggests non-normal data, leading the author to conclude that the data from IM1 are subject to 

a normal distribution; the Q-Q plots in Figure 25b and 25c show deviations from the normality 
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line, leading the author to conclude that the data from IM2_H and IM2_BRB1 are subject to 

non-normal distribution. 

The inconsistency between the results from Table 4 and the visual interpretation of the Q-Q 

plot in Figure 25a, due to both the large sample size and the awareness that the interpretation 

of Q-Q plots can be subjective [67], led to the decision to apply parametric and non-parametric 

tests for the validation of measurement process and the distinction between healthy state and 

broken bar state. 

6.1.1.  Siemens – Normality Assumption 

Because the measurements were conducted on SCIMs over 10 consecutive days (100 

measurements per day), meaning that measurements were repeated on the same objects at more 

than two time points, repeated measures analysis of variance (RM-ANOVA) as a method for 

determining the independence of the daily measurements was chosen. RM-ANOVA is a 

statistical method used when differences between three or more correlated groups are 

investigated [68]. The assumptions of the RM-ANOVA are approximately normally distributed 

dependent variable, no outliers in any of the repeated measurements, and sphericity [69]. The 

studies conducted in [70] have shown that RM-ANOVA is a valid statistical method even in 

the case of non-normal distribution if the sphericity assumption is met. The sphericity of the 

data is examined using the Mauchly test [71]. The results of the Mauchly test for each motor 

and motor condition are shown in Table 5. The Mauchly test is performed with the implemented 

MATLAB functions “rm = fitrm()” and “mauchly(rm)”. 

Table 5. Siemens group - results of the Mauchly test for each motor and motor state. 

Motor W ChiStat DF p-value 

IM1 0.99999 41.49 44 0.5798 

IM2_H 0.99999 33.811 44 0.86671 

IM2_BRB1 0.99999 36.867 44 0.76842 

 

The results from Table 5 show that the p-value for each motor is greater than 0.05, which means 

that the differences in all daily combinations have equal variances, i.e., the sphericity 

assumption is met. 

Statement of the null and alternative hypothesis for the daily measurement of each motor and 

motor condition: 

 𝐻0 ∶  𝜇1 = 𝜇2 =. . . = 𝜇10  
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 𝐻1 ∶  𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝜇 𝑑𝑖𝑓𝑓𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 

where 𝜇𝑛 is the population mean of n-th day. 

The results of the RM-ANOVA analysis are shown in Table 6. The RM-ANOVA is performed 

with the implemented MATLAB function “ranova(rm)”. 

Table 6. Siemens group - results of RM-ANOVA analysis for each motor separately.   

Motor  SumSq DF MeanSq F p-value 

IM1 
(Intercept): day 0.0032546 9 0.00036162 1.0344 0.40934 

Error(day) 9439.4 2.7 × 107 0.00034961   

IM2_H 
(Intercept): day 0.0037357 9 0.00041508 1.0644 0.38553 

Error(day) 10529 2.7 × 107 0.00038995   

IM2_BRB1 
(Intercept): day 0.0015375 9 0.00017084 0.41369 0.92853 

Error(day) 11150 2.7 × 107 0.00041296   

 

Results from Table 6 show that the p-value for each motor is greater than 0.05, which means 

that there is not enough evidence to reject the null hypothesis at a 5% significance level, i.e., 

all mean values of the 10-day measurements are the same for a given motor. The p-values for 

day-to-day comparison are determined using the MATLAB function “multcompare(rm)”. The 

results of the multiple comparison with uncorrected p-values are shown in Figure 26. 

 
(a) 
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(b) 

 
(c) 

Figure 26. Siemens group - multiple comparison results of RM-ANOVA—uncorrected p-values: (a) IM1;        

(b) IM2_H; (c) IM2_BRB1. 

Figure 26 shows that not all day-to-day combinations have p-values of more than 0.05. 

For multiple hypothesis tests, the probability that the null hypothesis is rejected, even though it 

is true, increases with the number of tests (Type I error—false positive) [72]. The Type I error 

is controlled by adjusting the p-value. Two general methods for p-value adjustment are the 

familywise error rate (FWER) and the false discovery rate (FDR) [73]. The FWER is the 

probability of one or more type I errors occurring in a family of tests under the null hypothesis, 

and the FDR is the expected proportion of the ratio: number of false-positive tests to the number 

of tests with the null hypothesis rejected [74]. There are a variety of methods for controlling 

FWER (Bonferroni, Holm, Hochberg, Hommel, and adaptive Bonferroni) and FDR (two-stage 

linear set-up procedure of Benjamini, Krieger and Yekutieli, Benjamini and Hochberg, and 

Storey Tibshirani) [75], [76], [77]. The most representative methods for FWER and FDR are 

Bonferroni and Benjamini–Hochberg, respectively. Since the Bonferroni correction is 

conservative and less powerful compared to the Benjamini–Hochberg (BH) correction [78],     

p-value adjustment for the multiple comparison results is performed using the BH correction. 

BH correction method: Sorting the p-values in ascending order, ranking the p-values (the 

smallest p-value has rank 1), calculating the critical BH value for each p-value using the formula 

(i/m)Q, where i is the rank of a particular p-value, m is the total number of tests, and Q is the 

false discovery rate chosen by the user. After sorting the p-values and calculating the critical 

value, the largest p-value whose value is less than the critical value sets the cut-off for rejecting 

the null hypothesis. All null hypotheses with p-values smaller than the largest p-value found, 

including the largest p-value, are rejected [79], [80]. The results of the BH correction are shown 

in Figure 27. 
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Figure 27. Siemens group - results of Benjamini-Hochberg procedure. 

Results from Figure 27 show that there is no intersection of the sorted p-values with the line     

y = (i/m)Q, which means that all day-to-day combinations with p-values below 0.05 are false 

positives, i.e., there is no statistically significant difference between all day-to-day 

combinations for each motor. 

To comprehend more clearly the overall measurement and validation process flow chart is 

shown in Figure 28. 

To investigate whether the approach with a triaxial sensor, random positions over the motors, 

and raw data makes a difference between the motor conditions, a two-way RM-ANOVA was 

used. The two-way RM-ANOVA is performed using the MATLAB function “ranova(rm)”. 

Before performing the two-way RMANOVA, the Mauchly test is performed to check whether 

the sphericity is met. The result of the Mauchly test is shown in Table 7, and the result of the 

analysis is shown in Table 8. 

Table 7. Siemens group - results of the Mauchly test of data prepared for two-way RM-ANOVA. 

W ChiStat DF p-value 

1 36.631 44 0.77698 

 

Table 8. Siemens group - results of the two-way RM-ANOVA. 

 SumSq DF MeanSq F p-value 

(Intercept): day 0.0013094 9 0.00014549 0.37871 0.94548 

Motor 8.6033 2 4.3017 10413 0 

Motor: day 0.0072185 18 0.00040103 1.0439 0.40485 

Error(day) 31,118 8.1 × 107 0.00038417 1 0.5 
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Figure 28. Flowchart of validation process based on raw data 

Results from Table 7 show that sphericity is met (p > 0.05). The results from Table 8 show that 

there is not enough evidence for the variable “day” to reject the null hypothesis with a 

significance level of 5%, i.e., there is no significant difference in the mean values between the 

days. This is already evident in the analysis, which was carried out separately for each motor. 

Table 8 also shows that there is strong evidence (p = 0) for the variable “Motor” to reject the 

null hypothesis at a significance level of 5%, i.e., there is a statistically significant difference 

between the motors. The multiple comparison test according to the variable “Motor” is shown 

in Table 9, and the estimated difference in means (with 95% confidence intervals) is shown in 

Figure 29. 

Table 9. Siemens group - results of multiple comparison test by variable “Motor” - uncorrected p-values. 

Motor 1 Motor 2 Difference StdErr p-value Lower Upper 

IM1 IM2_H 9.0766 × 10−5 5.2479× 10−6 5.0809× 10−67 8.048e-05 0.00010105 

IM1 IM2_BRB1 −0.00060576 5.2479 × 10−6 0 −0.00061605 −0.00059548 

IM2_H IM2_BRB1 −0.00069653 5.2479 × 10−6 5.0809 × 10−67 −0.00070681 −0.00068624 
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Figure 29. Siemens group - estimated difference in means of variable “Motor” with 95% confidence interval. 

The results from Table 9 show that there is a statistically significant difference between the 

individual motors. Figure 29 shows the graphical representation of the results from Table 9. 

The estimated difference in means with a 95 % confidence interval for healthy–healthy motor 

combinations is represented in blue colour, and healthy–BRB combinations are represented in 

red color in Figure 29. The non-overlapping intervals of healthy-healthy combination with any 

healthy–BRB1 combinations graphically indicate a statistically significant difference. From 

Figure 29, it is observable that healthy–BRB1 combinations differ significantly in value from 

healthy–healthy combination. To quantify the differences, the percentage difference between 

values of estimated differences in means is calculated, and the results are shown in Table 10. 

Table 10. Siemens group - percentage difference in estimated differences in means relative to the healthy–

healthy motor combination. 

Reference Motor Combination Percentage Difference of Estimated Differences in Means 

IM1–IM2_H 
IM1–IM2_BRB1 767.40% 

IM2_H–IM2_BRB1 867.40% 

 

6.1.2.  Siemens – Non parametric Assumption 

The assumption of a non-normal data distribution implies the use of a non-parametric test. In 

non-parametric analysis, the data are transformed into ranks or signs [81]. The power of non-

parametric tests is generally lower than that of parametric tests, but they are more powerful for 

non-normally distributed data [81], [82]. The non-parametric alternative to the RM-ANOVA 

test is the Friedman test [83]. The null hypothesis of the Friedman test states that the compared 

groups come from the same population or the population with the same median [84]. The null 

hypothesis for this study is that the data obtained from the measurements taken over a 10-day 
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period for a particular motor come from the same population. The test is performed using the 

MATLAB function “friedman(x)”, where “x” represents the data table shown in Figure 20b. 

The results of the Friedman test for each motor are shown in Table 11. 

Table 11. Siemens group - results of the Friedman test for each motor. 

Motor  SS df MS Chi-sq Prob>Chi-sq 

IM1 

Columns 92.7364 9 10.304 10.13 0.34 

Error 247,166,451.7636 26,999,991 9.1543   

Total 247,166,544.5 29,999,999    

IM2_H 

Columns 104.678 9 11.6309 11.43 0.2471 

Error 247,189,783.322 26,999,991 9.1552   

Total 247,189,888 29,999,999    

IM2_BRB1 

Columns 62.6033 9 6.95593 6.84 0.654 

Error 247,200,721.8967 26,999,991 9.15559   

Total 247,200,784.5 29,999,999    

 

The results from Table 11 show that all p-values are greater than 0.05, i.e., for each motor/motor 

condition, there is insufficient evidence to reject the null hypothesis at a 5% significance level, 

meaning that all measurements for a given motor come from the same distribution. The results 

of the multiple comparison with uncorrected p-values for each motor are shown in Figure 30. 

 
(a) 

 
(b) 
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(c) 

Figure 30. Siemens group - multiple comparison results of Friedman test—uncorrected p-values: (a) IM1;       

(b) IM2_H; (c) IM2_BRB1. 

 

Figure 30 shows that not all p-values are above the significance level of 0.05. To check whether 

the significant p-values are false-positive, the BH correction is applied. The results of the BH 

correction are shown in Figure 31. 

 

Figure 31. Siemens group - correction of p-values with BH after multiple comparison of the Friedman test. 

The results from Figure 31 show that there is no intersection of the sorted p-values with the line 

y=(i/m)Q, which means that all day-to-day combinations with p-values below 0.05 are false 

positives, i.e., there is no statistically significant difference between all day-to-day 

combinations for each motor. 

To examine the differentiation between motor conditions assuming a non-normal distribution, 

the Friedman test was used. The data for the analysis are organized in a table consisting of 

columns representing the variable “Motor” and rows representing the variable “day”. The null 
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hypothesis for this analysis is as follows: the data obtained for each motor with the 

measurements over a 10-day period come from the same population. The results of the 

Friedman test are shown in Table 12. 

Table 12. Siemens group - results of the Friedman test for motor comparison. 

 SS df MS Chi-sq Prob>Chi-sq 

Columns 1.8583 × 104 2 9.2914 × 103 1.8647 × 104 0 

Error 5.9776 × 107 59,999,998 0.9963   

Total 5.9795 × 107 89,999,999 0.00038417   

 

The results from Table 12 show that there is a significant difference between the motors               

(p = 0), i.e., that the data obtained for each motor does not come from the same population. The 

multiple comparison by the variable “Motor” is shown in Table 13 and the estimated difference 

in mean ranks (with 95% confidence intervals) is shown in Figure 32. 

 

Table 13. Siemens group - results of the multiple comparison by variable “Motor”—uncorrected p-values. 

Motor 1 Motor 2 Difference p-value Lower Upper 

IM1 IM2_H 0.0042759 8.3828 × 10−62 0.0037707 0.0047811 

IM1 IM2_BRB1 −0.028118 0 −0.028623 −0.027613 

IM2_H IM2_BRB1 −0.032394 0 −0.032899 −0.031889 

 

 
Figure 32. Siemens group - estimated difference in mean ranks of variable “Motor” with 95% confidence 

interval. 

The results from Table 13 show that there is a statistically significant difference between the 

individual motors. Figure 32 shows the graphical representation of the results from Table 13. 

The percentage difference of estimated mean ranks for the motor combinations with BRB fault 

compared to the healthy motor combinations is shown in Table 14. 
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Table 14. Siemens group - percentage difference in estimated differences in mean ranks relative to the healthy–

healthy motor combination. 

Reference Motor Combination Percentage Difference in Estimated Differences in Mean Ranks 

IM1–IM2_H 
IM1–IM2_BRB1 757.60% 

IM2_H–IM2_BRB1 857.60% 

 

6.2. Siemens – Feature Analysis 

Results of feature analysis based on 1000 measurements for the Siemens group are shown in 

Figure 33. 

 

Figure 33. Mean number of appearances in 30 iterations for Siemens group. 

Figure 33 shows mean number of appearances of features in 30 iterations, according to 

flowchart on Figure 16, and corresponding standard deviation interval displayed with red bars. 

From Figure 28 it is observable that 4 out of 19 features appear with different mean values. 

Features No. 12 has highest mean value: 99.4 %. Feature No. 14 has second highest value,    

96.0 %. Feature No. 15 has third highest value, 85.46 %, and Feature No. 17 has fourth highest 

value, 38.66 %. 

Results of feature analysis for different number of measurements are shown in Figure 34 (3D 

bar graph), Figure 35 (view 1), Figure 36 (view 2) and Figure 37 (view 3). 
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Figure 34. Siemens group – Feature appearance as a function of number of measurements – 3D bar graph. 

 

 

Figure 35. Siemens group – Feature appearance as a function of number of measurements – view 1. 

 

 

Figure 36. Siemens group – Feature appearance as a function of number of measurements – view 2. 
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Figure 37. Siemens group – Feature appearance as a function of number of measurements – view 3. 

Analysing results through Figures 34 and 37 one can observe that there are features that do not 

appear at all in broken rotor bar detection analysis for Siemens group. Features that do not 

appear at all for Siemens group are shown in Table 15.  

Table 15. Features that do not appear at all in the analysis for Siemens group. 

No. Feature No. Feature 

1 Energy 8 Root mean square 

3 Standard deviation 9 Root sum of squares 

4 Variance 11 Peak-to-peak 

6 Kurtosis 19 Waveform length 

7 Skewness   

 

From Figure 34 it is observable that different features have different dependency on number of 

measurements. Features with high number of appearances in the interval nm=20, …, 120 are 

features mean (No. 2) and median (No. 5). With the increase of the number of measurements, 

the number of appearances for features 2 and 5, decreases and reaches zero at nm=640 for 

feature 2 and at nm=680 for feature 5. Maximum values that feature 2 and 5 achieve are 96 % 

for nm=40,60 and 97 % for nm=40 respectively. Appearance of feature interquartile range (No. 

10), shape factor (No. 13), harmonic mean (No. 16) and fifth central moment (No. 17) is 

considered negligible since their maximum values do not have values more than 2 %. Feature 

sixth central moment (No. 18) has overall increasing trend on the interval nm=340, …, 1000. 
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Maximum value that feature No. 18 achieves is 19 % at nm=1000. Features peak-to-rms (No. 

12), impulse factor (No. 14) and clearance factor (No. 15) exhibit increase and decrease in 

appearance but with overall trend of increase. Feature 12 reaches 100 % at nm=520 and for 

interval nm=540, …, 1000 has average value 99.5 % with standard deviation value 0.93 %. 

Feature 14 reaches 97 % at nm=520 and for interval nm=540, …, 1000 has average value 98.5 

% with standard deviation value 1.31 %. Feature 15 reaches 96 % at nm=520 and for interval 

nm=540, …, 1000 has average value 95.62 % with standard deviation value 2.37 %. 

Higher value of „Number of appearances“ for a given feature means that the condition             

pIM1-IM2_H > 0.05, pIM1-IM2_BRB1 < 0.05, pIM2_H-IM2_BRB1 < 0.05 is meet more times then in 

comparison with another feature, i.e., given feature differentiates healthy from faulty state more 

times that other feature. For example, if all 1000 measurement are considered, then for feature 

No. 12 (Peak-to-rms) it can observed from Figure 28 that mentioned condition is meet 99.4 

times on average in 30 iterations, whereas feature No. 17 has meet the condition 38.66 times 

on average in 30 iterations. Feature No. 12 more reliably diffirentiates healthy from faulty state 

then feature No. 17. 

Analysis for different number of measurements is conducted without iterations. The reason for 

this was execution time of MATLAB script. Code execution time for case of all 1000 

measurements (MATLAB script shown in Appendix B) was approximately 9 hours. For each 

number of measurement only one time random measurements were taken and analysed for the 

mentioned condition. This was carried out for series nm=20, 40, 60, ..., 1000, in total 50 times. 

Code execution time for generating Figure 29 was approximately 14 h. If 30 iteration were 

conducted execution time would approximately be 17.5 days.  

 

6.3. Siemens – FFT Analysis 

FFT analysis is based on 1000 measurements. First, all signals for each motor/motor state are 

added as shown in Figure 16 (e.g., M1=Coil 1+Coil 2+Coil 3). On each measurement of each 

motor/motor state FFT is applied. Afterwards, for each frequency component mean value is 

calculated. FFT for each motor/motor state of the Siemens group is shown in Figure 38. 
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Figure 38. Siemens group - FFT of IM1, IM2_H and IM2_BRB1. 

For comparison of healthy motors and faulty motor the slip value is needed. Because analysis 

is conducted on 1000 measurements the average speed value 𝑛̅ is calculated for each motor 

based on the logging described in APPENDIX A. Based on 𝑛̅ average slip 𝑠̅ is calculated. In 

Table 16 average speed value (𝑛̅), standard deviation (𝜎) and average slip (𝑠̅) is presented for 

Siemens group. Also, for Siemens group, calculated frequency components according to Eq.1 

and 2 are show in Table 16. 

Table 16. Siemens group - frequency components according to Eq. 1 and 2. 

  IM1 IM2_H IM2_BRB1 

n̅ [rpm] 1437.35 1435.5 1427.40 

𝜎 [rpm] 1.08 1.10 0.75 

𝑠̅ [ ] 0.0418 0.043 0.0484 

𝑠̅𝑓𝑠 [Hz] 2.08 2.15 2.42 

3𝑠̅𝑓𝑠 [Hz] 6.26 6.45 7.26 

 

Figure 39 shows the FFT of the frequency interval 0 – 8 Hz for Siemens group. 

 
Figure 39. Siemens group - frequency spectrum of the interval 0 - 8 Hz. 
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From Figure 39 it can be observed that frequency component 𝑠̅𝑓𝑠 of healthy motors have small 

difference in amplitude and that big difference in amplitude compared to faulty motor. 

Percentage difference of the amplitudes for healthy motors, relative to IM1, is 4.26 %. 

Percentage difference of the amplitudes for IM1 and IM_BRB1 is, relative to IM1, is           

118.53 %. Percentage difference of the amplitudes for IM2_H and IM_BRB1 is, relative to 

IM2_H, is 109.60 %. Amplitudes of frequency components 3𝑠̅𝑓𝑠 for healthy motors are 

negligible when compared to 3𝑠̅𝑓𝑠 component amplitude of faulty motor. Amplitude of 3𝑠̅𝑓𝑠 

component for faulty motor is 4.74·10-5 [V]. For Simens group frequency components defined 

by Eq. 3 and 4 are show in Table 17. For each motor components are calculated for                     

k=1, 2, …, 10.  

Table 17. Siemens group – frequency components defined by Eq. 3 and 4. for k=1, 2, …, 10. 

k (𝟏 − 𝟐𝒌𝒔̅)𝒇𝒔 (𝟏 + 𝟐𝒌𝒔̅)𝒇𝒔 (
𝒌

𝒑
(𝟏 − 𝒔̅) − 𝒔̅) 𝒇𝒔 (

𝒌

𝒑
(𝟏 − 𝒔̅) + 𝒔̅) 𝒇𝒔 

IM1 

1 45.82 54.17 21.87 26.04 

2 41.64 58.35 45.83 50.00 

3 37.47 62.53 69.78 73.96 

4 33.29 66.71 93.73 97.91 

5 29.12 70.88 117.69 121.86 

6 24.94 75.06 141.64 145.82 

7 20.76 79.24 165.60 169.78 

8 16.58 83.41 189.59 193.73 

9 12.41 87.59 213.51 217.69 

10 8.24 91.76 237.47 241.65 

IM2_H 

1 45.70 54.30 21.77 26.07 

2 41.40 58.60 45.70 50.00 

3 37.10 62.90 69.62 73.92 

4 32.80 67.20 93.55 97.85 

5 28.50 71.50 117.47 121.77 

6 24.20 75.80 141.40 145.70 

7 19.90 80.10 165.32 169.62 

8 15.60 84.40 189.25 193.55 

9 11.30 88.70 213.17 217.47 

10 7.00 93.00 237.10 241.40 

IM2_BRB1 

1 45.16 54.84 21.37 26.21 

2 40.32 59.68 45.16 50.00 

3 35.48 64.52 68.95 73.79 

4 30.64 69.36 92.74 97.58 

5 25.80 74.20 116.53 121.37 

6 20.96 79.04 140.32 145.16 
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7 16.12 83.88 164.11 168.95 

8 11.28 88.72 187.90 192.74 

9 6.44 93.56 211.69 216.53 

10 1.60 98.40 235.48 240.32 

 

Figure 40 shows the FFT of the frequency interval 8 – 19 Hz for Siemens group. 

 
Figure 40. Siemens group - frequency spectrum of the interval 8 - 19 Hz. 

In Figure 40 only one frequency component of the faulty motor stands out. At the frequency                

16.55 Hz faulty motor has a peak whose value is 7.79·10-5 [V]. All amplitudes of the healthy 

motors on the interval 8 – 19 Hz are negligible when compared to the frequency components 

of the faulty motor at 16.55 Hz. Looking at the frequencies from Table 17 one can observe that 

frequency 16.55 Hz does not match any of values for IM2_BRB1. 

Figure 41 shows the FFT of the frequency interval 19 – 38 Hz for Siemens group. 

 
Figure 41. Siemens group - frequency spectrum of the interval 19 - 38 Hz. 
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From Figure 41 it can be observed that all frequency components that appear in range 20-28 Hz 

are predicted with Eq. 4. Frequencies that appear in the interval 21–22 Hz are defined with 

equation (𝑘

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠  and frequencies from the interval 26–26.3 Hz are defined with equation                                               

(
𝑘

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠. Frequency components of healthy motors that appear at 21.8501 Hz (IM2_H) 

and 21.9501 Hz (IM1) have percentage difference in amplitudes, relative to IM1, 28.52 %. 

Percentage difference between healthy IM1 (21.9501 Hz) and faulty IM2_BRB1 (21.4001 Hz), 

relative to IM1, is 530.25 %. Percentage difference between healthy IM2_H (21.8501 Hz) and 

faulty IM2_BRB1 (21.4001 Hz), relative to IM2_H, is 390.37 %. Percentage difference 

between healthy IM1 and faulty IM2_BRB1 motor from the interval 26–26.3 Hz, relative to 

IM1, is 50.20 %. Percentage difference between healthy IM2_H and faulty IM2_BRB1 motor 

from the interval 26–26.3 Hz, relative to IM2_H, is -32.52 %. Percentage difference between 

healthy IM1and healthy IM2_H motor from the interval 26–26.3 Hz, relative to IM1, is      

122.61 %. Figure 36 also show that when two intervals are compared, components of the 

healthy motor exhibit increase in amplitude while components of the faulty motor have 

negligible difference in amplitudes. Frequency component at 31.05 Hz that appears for faulty 

motor does not match any of values for IM2_BRB1 from Table 17. 

Figure 42 shows the FFT of the frequency interval 38 – 50 Hz for Siemens group. 

 
Figure 42. Siemens group - frequency spectrum of the interval 38 - 50 Hz. 

From Figure 37 it can be observed that frequency components (1 − 2𝑠̅)𝑓𝑠 and (1 − 4𝑠̅)𝑓𝑠 

appear only for faulty motor. Frequency components that appear for all motors/motor states in 

the interval 44.0001 – 44.4001 Hz do not match any of values from Table 17. 

Figure 43 shows the FFT of the frequency interval 50 – 75 Hz for Siemens group. 
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Figure 43. Siemens group - frequency spectrum of the interval 38 - 50 Hz. 

From Figure 43 it can be observed that frequency components (1 + 2𝑠̅)𝑓𝑠 and (1 + 4𝑠̅)𝑓𝑠 

appear only for faulty motor. Frequency components (
𝑘

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠;  𝑘 = 3 of the faulty motor 

stands out compared to the healthy motors. Percentage difference between healthy IM2_H and 

faulty IM2_BRB1 motor, relative to IM2_H, is 533.77 %. Frequency component 

(
𝑘

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠;  𝑘 = 3 is present for each motor/motor state and has highest amplitude for IM2_H. 

Percentage difference between healthy IM2_H and IM2_BRB1, relative to IM2_H, is                     

-61.16 %. Percentage difference between healthy IM1 and IM2_BRB1, relative to IM1, is                     

-2.91 %. 

Figure 44 shows the FFT of the frequency interval 75 – 100 Hz for Siemens group. 

 
Figure 44. Siemens group - frequency spectrum of the interval 38 - 50 Hz. 

From Figure 44 it can be observed that three frequency components from the interval 78.1-

78.6002 Hz do not match any value from Table 17. Same applies for frequency component at 

83.4502 Hz and at 87.9002 Hz. Frequency components that appear only for faulty motor are 
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(1 + 2𝑠̅)𝑓𝑠 ;  𝑘 = 7 and (
𝑘

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠;  𝑘 = 4. Frequency component that appears for all 

motor/motor state is (
𝑘

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠;  𝑘 = 4 and it has highest amplitude value for faulty motor. 

Percentage difference between healthy IM1 and faulty IM2_BRB1 motor, relative to IM1, is 

242.17 %. 

Frequency components on interval 0 – 100 Hz that only appear for IM2_BRB1 or have higher 

IM2_BRB1 amplitude value compared to healthy motors, are listed in Table 18. 

 

Table 18. Frequency components for Siemens group that indicate the presence of broken rotor bar. 

No. Frequency component  f [Hz] 
Frequency 

interval [Hz] 

1 𝑠̅𝑓𝑠 2.4 1.8-2.8 

2 3𝑠̅𝑓𝑠 7.25 7-8 

3 (
1

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 21.4 20-23 

4 (1 − 4𝑠̅)𝑓𝑠 40.3 40-41 

5 (1 − 2𝑠̅)𝑓𝑠 45.15 44.6-46 

6 (1 + 2𝑠̅)𝑓𝑠 54.85 54-56 

7 (1 + 4𝑠̅)𝑓𝑠 59.65 58-60 

8 (
3

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 68.95 68-71 

9 (1 + 8𝑠̅)𝑓𝑠   

10 (1 + 14𝑠̅)𝑓𝑠 83.80 82-85 

11 (
2

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠   

12 (
4

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 92.75 91-95 

13 (
2

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠   

14 (
4

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠 97.55 96-98 

 

Corresponding frequency intervals that are chosen for number of measurements analysis are 

show in Table 18. 

Randomly taken number of measurements that have been investigated are 1, 2, 3, 4, 5 and 10. 

This series is chosen based on the dynamics of the results. Results based on flowchart from 

Figure 18 for Siemens group are shown in Figure 45 and Figure 46.  
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Figure 45. Dependence of mean value of 30 iterations on number of randomly taken measurements.  

 

 

Figure 46. Dependence of standard deviation of 30 iterations on number of randomly taken measurements. 

On Figure 45 it is observable that different frequency components have different response to 

randomly taken number of measurements. For 1 randomly taken measurement highest value 

has 20-23 Hz interval with corresponding frequency component (
1

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 . Lowest value 

has 58-60 Hz interval with corresponding frequency component (1 + 4𝑠̅)𝑓𝑠 . Frequency 

components that have maximum mean value of 30 iterations for 5 randomly taken 

measurements are (
1

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 , (

3

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 and  (

4

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 . At 10 randomly taken 

measurements frequency components 𝑠̅𝑓𝑠 , (
1

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠, (

4

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 , (

3

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 and 

(
4

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠  have maximum mean value of 30 iterations. At 10 randomly taken 
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measurements frequency components 3𝑠̅𝑓𝑠, (1 + 14𝑠̅)𝑓𝑠, (1 − 4𝑠̅)𝑓𝑠,  (1 + 2𝑠̅)𝑓𝑠 , (1 − 2𝑠̅)𝑓𝑠 and        

(1 + 4𝑠̅)𝑓𝑠 have values 99.96 %, 99.80 %, 93.96 %, 93.76 %, 85.86 % and 54.96 % respectively.  

On Figure 46 it is observable that different frequency components have different standard 

deviation response to randomly taken number of measurements. Frequency component that for 

1 randomly taken measurement has lowest value is (
1

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 . Frequency component that 

for 1 randomly taken measurement has highest value is (1 + 4𝑠̅)𝑓𝑠 . Frequency components that 

have minimum value of standard deviation of 30 iterations for 5 randomly taken measurements 

are (
1

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 , (

3

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 and  (

4

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 . At 10 randomly taken measurements 

frequency components 𝑠̅𝑓𝑠 , (
1

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠, (

4

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 , (

3

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 and (

4

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠  

have minimum value of standard deviation of 30 iterations. At 10 randomly taken 

measurements frequency components 3𝑠̅𝑓𝑠, (1 + 14𝑠̅)𝑓𝑠, (1 − 4𝑠̅)𝑓𝑠,  (1 + 2𝑠̅)𝑓𝑠 , (1 − 2𝑠̅)𝑓𝑠 and        

(1 + 4𝑠̅)𝑓𝑠 have standard deviation values 0.18 %, 0.48 %, 1.82 %, 2.71 %, 3.72 % and 5.16 % 

respectively. 

 

6.4. Končar – Statistical Analysis 

The raw data visualization for each motor, each motor state and each day is shown with 

histograms in Figure 47. The histogram of each day contains all data values obtained with the 

data logger for all three coils. The number of bins chosen to represent the histogram is 100. 

This number of bins was chosen for visualization purposes only, i.e., to show 10 histograms in 

one figure that can be visually distinguished. The visualization is not intended to draw 

conclusions about the data distribution. 

   
(a) (b) (c) 

Figure 47. Končar group - raw data visualization for each day: (a) IM1; (b) IM2_H; (c) IM2_BRB1; Number of 

bins for all histograms is 100. 

The results of the numerical normality tests, same test applied for Siemens group, are shown in 

Table 19. 
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Table 19. Končar group - results of the normality tests. 

Test Motor 
p-value 

day 1 day 2 day 3 day 4 day 5 day 6 day 7 day 8 day 9 day 10 

One-sample Kolmogorov–
Smirnov 

IM1 0 0 0 0 0 0 0 0 0 0 

IM2_H 0 0 0 0 0 0 0 0 0 0 

IM2_BRB1 0 0 0 0 0 0 0 0 0 0 

Anderson-Darling 

IM1 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 

IM2_H <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 

IM2_BRB1 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 <5·10-4 

Jarque-Bera 

IM1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_H <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_BRB1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Lilliefors 

IM1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_H <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

IM2_BRB1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 

The results from Table 19 show that the p-value for every motor, motor state and day is less 

than 0.001, which means the rejection of the null hypothesis that the data come from a normal 

distribution. The Q-Q plot for each motor, motor state, and day is shown in Figure 48. 

 
(a) 

 
(b) 
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(c) 

Figure 48. Končar group - Quantile-Quantile plot for each day: (a) IM1; (b) IM2_H; (c) IM2_BRB1. 

Q-Q plots on Figure 48 show that data for all motors and all days is non-normally distributed.  

For Končar group there is no inconsistency between numerical tests and Q-Q plots. This 

conclusion leads to the application of Friedman test, according to flowchart on Figure 28. 

6.4.1.  Končar – Non-parametric Assumption 

The results of the Friedman test for each motor are shown in Table 20. 

Table 20. Končar group - results of the Friedman test for each motor. 

Motor  SS df MS Chi-sq Prob>Chi-sq 

IM1 

Columns 104.05 9 11.5611 11.35 0.2522 

Error 247,428,043.95 26,999,991 9.164   

Total 247,428,148 29,999,999    

IM2_H 

Columns 60.2422 9 6.69358 6.57 0.6814 

Error 247,426,124.2578 26,999,991 9.16393   

Total 247,426,184.5 29,999,999    

IM2_BRB1 

Columns 34.0362 9 3.7818 3.71 0.9292 

Error 247,427,684.4638 26,999,991 9.16399   

Total 247,427,718.5 29,999,999    

 

The results from Table 20 show that all p-values are greater than 0.05, i.e., for each motor/motor 

condition, there is insufficient evidence to reject the null hypothesis at a 5% significance level, 

meaning that all measurements for a given motor come from the same distribution. The results 

of the multiple comparison with uncorrected p-values for each motor are shown in Figure 49. 
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(a) 

 
(b) 

 
(c) 

Figure 49. Končar group - multiple comparison results of Friedman test—uncorrected p-values: (a) IM1;         

(b) IM2_H; (c) IM2_BRB1. 

Figure 49 shows that not all p-values are above the significance level of 0.05. To check whether 

the significant p-values are false-positive, the BH correction is applied. The results of the BH 

correction are shown in Figure 50. 
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Figure 50. Končar group - correction of p-values with BH after multiple comparison of the Friedman test. 

The results from Figure 50 show that there is no intersection of the sorted p-values with the line 

y=(i/m)Q, which means that all day-to-day combinations with p-values below 0.05 are false 

positives, i.e., there is no statistically significant difference between all day-to-day 

combinations for each motor. 

Results of Friedman test for healthy-BRB1 discrimination are shown in Table 21. 

Table 21. Končar group - results of the Friedman test for motor comparison. 

 SS df MS Chi-sq Prob>Chi-sq 

Columns 5.24513 2 2.62256 5.25 0.0725 

Error 59,951,939.25487 59,999,998 0.9992   

Total 59,951,944.5 89,999,999    

 

Results from Table 21 show that there is not enough evidence to reject the null hypothesis at a 

5% significance level. The null hypothesis states that data from all motors and motor states 

come from the same distribution. The multiple comparison by the variable “Motor” is shown 

in Table 22 and the estimated difference in mean ranks (with 95% confidence intervals) is 

shown in Figure 51. 

Table 22. Končar group - results of the multiple comparison by variable “Motor”—uncorrected p-values. 

Motor 1 Motor 2 Difference p-Value Lower Upper 

IM1 IM2_H 0.00011313 0.66114 -0.00039272 0.00061899 

IM1 IM2_BRB1 0.00055922 0.030257 5.3359e-05 0.0010651 

IM2_H IM2_BRB1 0.00044608 0.083923 -5.9774e-05 0.00095194 
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Figure 51. Končar group - estimated difference in mean ranks of variable “Motor” with 95% confidence 

interval. 

The results from Table 22 show that there is not enough evidence to reject the null hypothesis 

at a 5% significance level for IM1 and IM2_H combination, there is a statistically significant 

difference between IM1 and IM2_BRB1 combination and that there is not enough evidence to 

reject the null hypothesis at a 5% significance level for IM2_H and IM2_BRB1 combination. 

Figure 46 shows the graphical representation of the results from Table 22. The percentage 

difference of estimated mean ranks for the motor combinations with BRB fault compared to 

the healthy motor combinations is shown in Table 23. 

Table 23. Končar group - percentage difference in estimated differences in mean ranks relative to the healthy–

healthy motor combination. 

Reference Motor Combination Percentage Difference in Estimated Differences in Mean Ranks 

IM1–IM2_H 
IM1–IM2_BRB1 394.31 % 

IM2_H–IM2_BRB1 294.30 % 
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6.5. Končar – Feature Analysis 

Results of feature analysis based on 1000 measurements for the Končar group are shown in 

Figure 52. 

 
Figure 52. Mean number of appearances in 30 iterations for Končar group. 

Figure 52 shows mean number of appearances of features in 30 iterations, according to 

flowchart on Figure 16 and corresponding standard deviation interval displayed with red bars. 

From Figure 52 it is observable that 9 out of 19 features appear with different mean values. 

Feature 11, 14 and 16 have mean values that is lower than 10 %. Highest value, 82.46 %, has 

feature 2. Second highest value, 67.76 %, has feature 13. Third highest value, 50.83 %, has 

feature 5. Feature 10 has mean value 26.23 %, feature 15 24.13 % and feature 17 has mean 

value 16.8 %. 

Results of feature analysis for different number of measurements are shown in Figure 53 (3D 

bar graph), Figure 54 (view 1), Figure 55 (view 2) and Figure 56 (view 3). 

 
Figure 53. Končar group – Feature appearance as a function of number of measurements – 3D bar graph. 
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Figure 54. Končar group – Feature appearance as a function of number of measurements – view 1. 

 

 
Figure 55. Končar group – Feature appearance as a function of number of measurements – view 2. 

 

 
Figure 56. Končar group – Feature appearance as a function of number of measurements – view 3. 

Based on Figure 56 features 1, 3, 4, 6, 7, 8, 9, 10, 11, 16, 17, 18 and 19 are considered negligible 

since their maximum values are all below 10 %. Feature 2 has overall increase trend over whole 

interval with maximum value of 48 % at nm=980. Feature 5 has overall increase trend over 

whole interval with maximum value of 22 % at nm=1000. Feature 12 has overall increase trend 
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on the interval nm=20, …, 300 and overall decreasing trend on the interval nm=320, …, 1000. 

Maximum value for feature 12 is 42 % at nm=320. Feature 13 has overall increase trend over 

whole interval with maximum value of 35 % at nm=900. Feature 14 has overall increasing trend 

on the interval nm=20, …, 640 and overall decreasing trend on interval nm=660, …, 1000. 

Maximum value for feature 14 is 59 % at nm=640. Feature 15 has overall increasing trend on 

the interval nm=20, …, 680 and overall decreasing trend on interval nm=700, …, 1000. 

Maximum value for feature 16 is 77 % at nm=680. 

6.6. Končar – FFT Analysis 

FFT analysis for Siemens and Končar group is based on 1000 measurements. First, all signals 

for each motor/motor state are added as shown in Figure 16 (e.g., M1=Coil 1+Coil 2+Coil 3). 

On each measurement of each motor/motor state FFT is applied. Afterwards, for each frequency 

component mean value is calculated. FFT for each motor/motor state of the is shown i for 

Končar group is shown in Figure 57. 

 
Figure 57. Končar group - FFT of IM1, IM2_H and IM2_BRB1 

In Table 24 average speed value, standard deviation and average slip is presented for Končar 

group. Also, for Končar group, calculated frequency components according to Eq.1 and 2 are 

show in Table 24. 

Table 24. Končar group - frequency components according to Eq. 1 and 2. 

  IM1 IM2_H IM2_BRB1 

n̅ [rpm] 2807.65 2795.45 2786.5 

𝜎 [rpm] 1.04 0.88 0.75 

𝑠̅ [ ] 0.0641 0.0681 0.0711 

𝑠̅𝑓𝑠 [Hz] 3.20 3.40 3.55 

3𝑠̅𝑓𝑠 [Hz] 9.61 10.22 10.65 
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For Končar group frequency components defined by Eq. 3 and 4 are show in Table 25. For each 

motor, components are calculated for k=1, 2, …, 10.  

Table 25. Končar group – frequency components defined by Eq. 3 and 4. for k=1, 2, …, 10. 

k (𝟏 − 𝟐𝒌𝒔̅)𝒇𝒔 (𝟏 + 𝟐𝒌𝒔̅)𝒇𝒔 (
𝒌

𝒑
(𝟏 − 𝒔̅) − 𝒔̅) 𝒇𝒔 (

𝒌

𝒑
(𝟏 − 𝒔̅) + 𝒔̅) 𝒇𝒔 

IM1 

1 43.58 56.41 43.58 50.00 

2 37.17 62.82 90.38 96.79 

3 30.76 69.23 137.17 143.58 

4 24.35 75.64 183.97 190.38 

5 17.94 82.06 230.76 237.17 

6 11.53 88.47 277.56 283.97 

7 5.12 94.88 324.35 330.76 

8 -1.29 101.29 371.14 377.56 

9 -7.70 107.70 417.94 424.35 

10 -14.11 114.11 464.73 471.14 

IM2_H 

1 43.18 56.81 43.18 50.00 

2 36.36 63.63 89.77 97.00 

3 29.54 70.45 136.36 143.18 

4 22.72 77.27 182.95 189.77 

5 15.90 84.09 229.54 236.36 

6 9.09 90.91 276.13 282.95 

7 2.27 97.72 322.72 329.54 

8 -4.54 104.54 369.31 376.13 

9 -11.36 111.36 415.90 422.72 

10 -18.18 118.18 462.49 469.31 

IM2_BRB1 

1 42.88 57.11 42.88 50.00 

2 35.76 64.23 89.32 96.44 

3 28.65 71.35 135.76 142.88 

4 21.53 78.46 182.20 189.32 

5 14.41 85.58 228.65 235.76 

6 7.30 92.70 275.09 282.20 

7 0.18 99.81 321.53 328.65 

8 -6.93 106.93 367.97 375.09 

9 -14.05 114.05 414.41 421.53 

10 -21.16 121.16 460.85 467.97 

 

Figure 58 shows the FFT of the frequency interval 0 – 8 Hz for Končar group. 
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Figure 58. Končar group - frequency spectrum of the interval 0 - 8 Hz. 

From Figure 58 frequency components at 2.3 Hz and 6.9 Hz that appear for all motors/motor 

states do not match any value from the Table 25. Each motor/motor state has component 𝑠̅𝑓𝑠. 

The lowest amplitude value appears for IM1 and the highest amplitude value appears for 

IM2_BRB1. Percentage difference between healthy IM1 and faulty IM2_BRB1 motor, relative 

to IM1, is 197.18 %. Percentage difference between healthy IM2_H and faulty IM2_BRB1 

motor, relative to IM2_H, is 47.59 %. 

Figure 59 shows the FFT of the frequency interval 8 – 14 Hz for Končar group. 

 

Figure 59. Končar group - frequency spectrum of the interval 8 - 14 Hz. 

From Figure 59 frequency components at 11.5 Hz that appears for all motors/motor states 

matches only for IM1 and frequency component (1 − 2𝑘𝑠̅)𝑓𝑠  ;  𝑘 = 6. Frequency component 

3𝑠̅𝑓𝑠 has the highest amplitude value for the IM2_BRB1 and lowest amplitude value for IM2_H. 



68 
 

Percentage difference between IM1 and IM2_BRB1 motor, relative to IM1, is 8.54 %. 

Percentage difference between IM2_H and IM2_BRB1 motor, relative to IM2_H, is 29.50 %. 

Figure 60 shows the FFT of the frequency interval 14 – 26 Hz for Končar group. 

 
Figure 60. Končar group - frequency spectrum of the interval 14 - 26 Hz. 

From Figure 60 it observable that for interval 14-26 Hz there are no interesting peaks except 

for IM2_BRB1 at 17.9 Hz but as its amplitude has negligible difference when compared to 

IM1amplitude, no attention is given to this frequency component. 

Figure 61 shows the FFT of the frequency interval 26 – 34 Hz for Končar group. 

 
Figure 61. Končar group - frequency spectrum of the interval 26 - 34 Hz. 

From Figure 61 it observable that for the interval 26-34 Hz frequency component                         

(1 − 2𝑘𝑠̅)𝑓𝑠  ;  𝑘 = 3 is present for all motors/motor states. Percentage difference between IM1 

and IM2_BRB1 motor, relative to IM1, is -14.17 %. Percentage difference between IM1 and 

IM2_H motor, relative to IM1, is -13.61 %. 
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Figure 62 shows the FFT of the frequency interval 34 – 50 Hz for Končar group. 

 
Figure 62. Končar group - frequency spectrum of the interval 34 - 50 Hz. 

From Figure 62 it observable that for the interval 35-38 Hz frequency component                         

(1 − 4𝑠̅)𝑓𝑠  is present for all motors/motor states. Percentage difference between IM1 and 

IM2_BRB1 motor, relative to IM1, is 47.54 %. Percentage difference between IM1 and IM2_H 

motor, relative to IM1, is -9.76 %. For the interval 42-44 Hz frequency component                         

(1 − 2𝑠̅)𝑓𝑠  is present for all motors/motor states. Percentage difference between IM1 and 

IM2_BRB1 motor, relative to IM1, is 38.66 %. Percentage difference between IM1 and IM2_H 

motor, relative to IM1, is 37.93 %. Percentage difference between IM2_H and IM2_BRB1 

motor, relative to IM2_H, is 0.53 %. 

Figure 63 shows the FFT of the frequency interval 50 – 68 Hz for Končar group. 

 
Figure 63. Končar group - frequency spectrum of the interval 50 - 68 Hz. 

From Figure 63 it observable that for the interval 56-58 Hz frequency component                         

(1 + 2𝑠̅)𝑓𝑠  is present for all motors/motor states. Percentage difference between IM1 and 
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IM2_BRB1 motor, relative to IM1, is 25.12 %. Percentage difference between IM1 and IM2_H 

motor, relative to IM1, is -3.21 %. For the interval 62-64 Hz frequency component                         

(1 + 4𝑠̅)𝑓𝑠  is present for all motors/motor states. Percentage difference between IM1 and 

IM2_BRB1 motor, relative to IM1, is 33.56 %. Percentage difference between IM1 and IM2_H 

motor, relative to IM1, is -13.07 %. 

Figure 64 shows the FFT of the frequency interval 50 – 68 Hz for Končar group. 

 
Figure 64. Končar group - frequency spectrum of the interval 68 - 78 Hz. 

From Figure 64 it observable that for the interval 69-72 Hz frequency component                         

(1 + 6𝑠̅)𝑓𝑠  is present for all motors/motor states. Percentage difference between IM1 and 

IM2_BRB1 motor, relative to IM1, is -18.61 %. Percentage difference between IM1 and IM2_H 

motor, relative to IM1, is -11.09 %. Frequency components from interval 75-78 Hz do not 

match any value from the Table 25. 

Figure 65 shows the FFT of the frequency interval 78 – 100 Hz for Končar group. 

 
Figure 65. Končar group - frequency spectrum of the interval 78 - 100 Hz. 
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From Figure 65 it observable that frequency component (1 + 8𝑠̅)𝑓𝑠  is present only for 

IM2_BRB1. Frequency components that appear at f=82.25, 86.45, 91.05, 91.30, 91.70 and 

94.45 Hz do not match any value from Table 25. Frequency component (
𝑘

𝑝
(1 − 𝑠 ̅) − 𝑠 ̅) 𝑓

𝑠
 ; k=2 in 

interval 89-90.4 Hz is present for all motors/motor states. Percentage difference between IM1 

and IM2_BRB1 motor, relative to IM1, is 80.11 %. Percentage difference between IM1 and 

IM2_H motor, relative to IM1, is 69.82 %. Frequency component (
𝑘

𝑝
(1 − 𝑠 ̅) + 𝑠 ̅) 𝑓

𝑠
 ; k=2 in 

interval 96-97 Hz is present for all motors/motor states. Percentage difference between IM1 and 

IM2_BRB1 motor, relative to IM1, is 271.94 %. Percentage difference between IM1 and 

IM2_H motor, relative to IM1, is 65.10 %. Percentage difference between IM2_H and 

IM2_BRB1 motor, relative to IM2_H, is 125.28 %. 

Frequency components on interval 0 – 100 Hz that only appear for IM2_BRB1 or have higher 

IM2_BRB1 amplitude value compared to healthy motors, are listed in Table 26. 

Table 26. Frequency components for Končar group that indicate the presence of broken rotor bar and their 

corresponding frequency intervals. 

No. Frequency component  f [Hz] 
Frequency 

interval [Hz] 

1 𝑠̅𝑓𝑠 3.55 3-4 

2 3𝑠̅𝑓𝑠 10.65 9-11 

3 (
1

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠   

4 (1 − 4𝑠̅)𝑓𝑠 35.8 35-38 

5 (1 − 2𝑠̅)𝑓𝑠   

6 (1 + 2𝑠̅)𝑓𝑠 57.10 56-58 

7 (1 + 4𝑠̅)𝑓𝑠 64.20 62-65 

8 (
3

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠   

9 (1 + 8𝑠̅)𝑓𝑠 78.40 78-80 

10 (1 + 14𝑠̅)𝑓𝑠   

11 (
2

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 89.35 88-90.6 

12 (
4

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠   

13 (
2

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠 96.45 96-97 

14 (
4

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠   
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Corresponding frequency intervals that are chosen for number of measurements analysis are 

show in Table 26. 

Randomly taken number of measurements that have been investigated are also 1, 2, 3, 4, 5 and 

10.  This series for Končar group has been chosen for purposes of comparison to Siemens group. 

Results based on flowchart from Figure 18 for Končar group are shown in Figure 66 and Figure 

67.  

 
Figure 66. Dependence of mean value of 30 iterations on number of randomly taken measurements for Končar 

group. 

 
Figure 67. Dependence of standard deviation of 30 iterations on number of randomly taken measurements. 

From Figure 66 it is observable that different frequency components have different response to 

randomly taken number of measurements. For 1 randomly taken measurement highest value 

has 78-80 Hz interval with corresponding frequency component (1 + 8𝑠̅)𝑓𝑠 . Lowest value has 

88-90.6 Hz interval with corresponding frequency component (
2

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 . At 5 randomly 

taken measurements the highest value, 97.4 %, has component (
2

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠 that corresponds 

to 96-97 Hz interval. The lowest value, 35.03 %, at 5 randomly taken measurements has 
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component (
2

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 that corresponds to 88-90.6 Hz interval. At 10 randomly taken 

measurements the frequency component with highest value, 99.43 %, is (
2

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠 . At 10 

randomly taken measurements the mean values of frequency components 𝑠̅𝑓𝑠 , (1 + 8𝑠̅)𝑓𝑠 , (1 −

4𝑠̅)𝑓𝑠 and (1 + 4𝑠̅)𝑓𝑠  with corresponding intervals, 3-4 Hz, 78-80 Hz, 35-38 Hz and 62-65 Hz, 

respectively have mean values 93.53 %, 92.9 %, 91.8 % and 90.76 %, respectively. Frequency 

components (1 + 2𝑠̅)𝑓𝑠 , 3𝑠̅𝑓𝑠   and  (
2

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠  with corresponding intervals, 56-58 Hz, 9-11 Hz 

and 88-90.6 Hz, respectively have mean values 69.86 %, 63.76 % and 34.8 % respectively.  

On Figure 67 it is observable that different frequency components have different standard 

deviation response to randomly taken number of measurements. For 1 randomly taken 

measurement frequency component that has lowest value of standard deviation is  

(
2

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠 . Frequency component that has highest standard deviation value for 1 randomly 

taken measurement is (
2

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 . At 5 randomly taken measurements the highest standard 

deviation value, 5.64 %, has component 3𝑠̅𝑓𝑠 . The lowest value, 1.71 %, at 5 randomly taken 

measurements has component (
2

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠 . At 10 randomly taken measurements order of 

frequency components with lowest to highest standard deviation value is (
2

𝑝
(1 − 𝑠̅) + 𝑠̅) 𝑓𝑠 ,           

(1 + 8𝑠̅)𝑓𝑠 , 𝑠̅𝑓𝑠 , (1 − 4𝑠̅)𝑓𝑠 , (1 + 4𝑠̅)𝑓𝑠 , (2

𝑝
(1 − 𝑠̅) − 𝑠̅) 𝑓𝑠 , 3𝑠̅𝑓𝑠 and (1 + 2𝑠̅)𝑓𝑠 . Their corresponding values 

are 0.62 %, 2.09 %, 2.43 %, 2.69 %, 3.78 %, 4.08 %, 5.02 % and 5.74 %. 
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6.7. COMPARISON – Statistical Analysis 

Since data for Končar group follows non-parametric distribution, for comparison of results only 

the non-parametric analysis from Siemens group will be taken into account. Results of Siemens 

and Končar Friedman test for BRB detection is shown in Figure 68. Exact numerical values can 

be found in Table 13 and Table 22.  

 
Figure 68. Broken rotor bar detection: p-values for Siemens and Končar motors. 

From Figure 68 it can be observed that there is a statistically significant difference between two 

Siemens healthy motors. When comparing healthy Siemens motors to faulty Siemens motor, 

analysis shows a statistically significant difference. For Končar group Figure 63 show that for 

two healthy motors there is not enough evidence to reject the null hypothesis at 5 % significant 

level, which states that data of two healthy motors come from the same distribution. When 

comparing Končar motors IM1 and IM2_BRB1, analysis show that there is statistically 

significant difference. Comparison of IM2_H and IM2_BRB1 show that there is not enough 

evidence to reject the null hypothesis at 5 % significant level.  

Based on the graph from Figure 63 one can conclude that triaxial sensor with random 

positioning approach and raw data statistical analysis, cannot detect broken rotor bar fault in 

the case of Siemens and Končar motor. 

If the significant level is set to 10 % then it could be stated that for Končar motors triaxial sensor 

with random positioning approach and raw data statistical analysis, can detect broken rotor bar. 

This is not the case for Siemens motors because p-value for the healthy-healthy combination 

would still be lower than 0.1. 
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6.8. COMPARISON – Feature Analysis 

When comparing Figures 36 and 37 it can be observed that features 14, 15 and 17 are common 

to Siemens and Končar motors. Percentage difference between Siemens and Končar for feature 

14, relative to Siemens is -96.71 %. Percentage difference between Siemens and Končar for 

feature 15, relative to Siemens is -71.76 %. Percentage difference between Siemens and Končar 

for feature 17, relative to Siemens is -56.54 %. 

Comparison between Siemens and Končar group based on maximum value for each feature is 

displayed on Figure 69. 

 
Figure 69. Comparison of Siemens and Končar group based on maximum value. 

Figure 69 shows that BRB detection with feature approach for Siemens group is possible based 

on number of measurements that is lower than 1000. Six features of Siemens group (2, 5, 12, 

14 and 15) have maximum value greater that 95 %. All maximum values of Končar group are 

lower than 80 %.   

6.9. COMPARISON – FFT Analysis 

Analysis of Siemens and Končar motors with FFT based on 1000 measurement (of each motor) 

and BRB indicators defined by Eq. 1, 2, 3 and 4 showed that broken rotor bar can be detected 

with random positioning of triaxial sensor.  

Comparison of Siemens and Končar group by frequency components for 10 randomly taken 

measurements is shown in Figure 70. 
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Figure 70. Comparison of Siemens and Končar group by frequency components for 10 randomly taken 

measurements 

Frequency component No. on Figure 70 refers to numbering in Table 18 and Table 26. Black 

bar on Figure 65 represents the standard deviation. If the 90 % level is set as criterium for 

reliable BRB detection then in the case of Siemens group 9 out of 11 frequency components 

can serve as a BRB indicator for 10 randomly taken measurements. In the case of Končar group 

3 out of 8 frequency components can serve as a BRB indicator for 10 randomly taken 

measurements. If the 95 % level is set that it is 7 out of 11 for Siemens group and 1 out of 8 for 

Končar group. Frequency component that satisfies 90 % level and is common for both groups 

is frequency component No.1, 𝑠̅𝑓𝑠 . 
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7. CONCLUSION 

This thesis investigates the possibility of detecting a broken rotor bar in a stationary state 

with stray magnetic flux by randomly positioning the triaxial air-core coil above the surface of 

the motor. The triaxial air-core coil consists of a 3D-printed body and hand-wound coils. 

Before investigating the fault detection of broken bar, the validation of the measurement 

method is performed, which includes a triaxial coil and data recording. The reason for this was 

that the random positioning approach is novel approach and therefore needed to be analysed for 

consistency. In addition, there were no previously validated measurement devices or 

commercial equipment that could be used to compare the measurement results. Validation 

requires consistent measurement results for the unchanged condition of the motor. For example, 

if the motor is healthy, the measurement results obtained with the triaxial coil must show at all 

times that there are no quantitative differences in the measurement. 

All experiments were conducted with two groups of motors (Siemens and Končar motors), 

each group consisting of two identical motors. One motor of the group was kept in a healthy 

state throughout the process, while the second motor was tested in a healthy state, after which 

the broken rotor bar was generated. For each motor and each motor condition, 1000 

measurements were taken. One measurement involved randomly positioning the sensor on the 

surface of the motor and recording the data with a duration of 20 seconds and a sampling 

frequency of 5 kHz. 

Three approaches to BRB detection were investigated: statistical analysis of raw data, 

feature analysis and Fast Fourier Transformation Analysis. 

The first step in this thesis, the validation of the measurement method, was carried out with 

a statistical analysis of the raw data, i.e. the values of the induced electromotive force of the 

coils. The data was collected over a period of ten days, with 100 measurements per day. The 

statistical analysis of the data distribution was inconclusive. The normality tests performed in 

MATLAB did not show complete agreement with the quantile-quantile plots, which led to the 

use of two approaches: parametric and non-parametric. RM-ANOVA was used for the 

parametric approach. The results of the RM-ANOVA to validate the measurement method 

showed that the measurements for each motor and each motor condition are time-independent. 

The multiple comparison analysis was performed together with the Benjamini-Hochberg p-

value correction for the daily measurement combinations. After applying the Benjamini-

Hochberg correction, all p-values were above the 5% significance level, i.e., there was no 
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statistically significant difference between the daily measurements for a given motor, which 

that measurement method is valid. 

In the first approach to BRB detection, a two-way RM-ANOVA and a Friedman test were 

used to statistically analyse the differences between the Siemens group. The data analysis of 

the Končar group revealed that the raw data was not parametric and therefore only the Friedman 

test was applied. The results of the parametric test and the non-parametric test for the Siemens 

motor provide the same conclusion: there is a statistically significant difference between all 

motors, which means that approach with statistical analysis of raw data is not a valid method 

for BRB detection since it can not provide statistical differentiation between healthy and faulty 

state. The statistical analysis of the Siemens group based on the raw data did not provide a 

positive result in terms of BRB detection, more specifically it showed that there is a statistically 

significant difference between healthy motors and faulty motor, which is a positive result, but 

also that there is a statistically significant difference between two healthy motors. However, the 

multiple comparison of the motors showed that the estimated differences in the mean values of 

the healthy-healthy combination are 7 to 8 times greater than the differences in the mean values 

of the healthy-BRB combination. 

The statistical analysis of the Končar group based on the Friedman test did not provide a 

positive result regarding the detection of BRB. More specifically, the test showed that there is 

no statistically significant difference between two healthy motors, which is a positive result, 

but it also showed that there is no statistically significant difference between healthy motors 

and BRB motor. However, the analysis is based on a significance level of 5 %. If the 

significance level had been set at 10%, the results would have been positive in terms of BRB 

detection. 

The second approach to BRB detection, feature analysis, is based on 19 time-domain 

features. The feature analysis is performed for all 1000 measurements for each motor of each 

group. The influence of the number of measurements is analysed afterwards. To avoid bias in 

the order of the measurements, the measurement matrices of each motor were shuffled by 

columns. The analysis was performed for 30 iterations and shuffling was performed 100 times 

in each iteration. For each of the 100 iterations, the features for the shuffled 1000 measurements 

of each motor/motor state were calculated. The calculated feature series served as input for the 

Friedman test. Based on the significance level of 5 %, the combinations that would yield 

positive results were counted. The series. Each count represents the number of positive results 

of the Friedman test out of 100 tests. For each feature, the mean and standard deviation are 
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calculated on the basis of the 30 counts. If the level for reliable BRB detection is set at 80%, 

the Siemens group would have 3 features as reliable indicators: peak-to-rms, impulse factor and 

clearance factor. The Končar group would have 1 feature/indicator: mean. If the level for 

reliable BRB detection is set to 90%, then the Siemens group would have 2 reliable indicators: 

peak-to-rms and impulse factor. The Končar group would have none. If the level for reliable 

BRB detection is set to 98%, then the Siemens group would have 1 reliable indicator: peak-to-

rms. 

The influence of the number of measurements was analysed in the same way as for all 1000 

measurements, with the exception that there were no 30 iterations for each feature. The analysis 

is performed for the following series of number of measurements: nm=20, 40, 60, …, 980, 

1000. For each number of measurements, nm, the measurement matrix was shuffled and a 

random number of measurements were taken. This was followed by the feature calculation and 

the Friedman test. For each feature and each nm, 100 iterations were performed. The result of 

the process was counted, i.e. it was determined how many positive results of the Friedman test 

occurred in 100 tests. The overall results show that the number of appearances depends on the 

number of measurements, that different features have different dependency patterns and that 

there are some features that do not appear at all. If the level for reliable BRB detection is set at 

90%, then the Siemens group would have 3 features/indicators, peak-to-rms, impulse factor and 

clearance factor, which would reliably detect BRB in the interval nm=520, …, 1000. For the 

Siemens group in the nm=20, …, 200 interval, the peak-to-rms, impulse factor and clearance 

factor have their number of appearances in the range of 35 % and 77 %. Relevant features for 

the Siemens group in the interval nm=20, …, 200 are mean value and median. At nm=40 and 

60, the mean value feature has an occurrence of 96 % and at nm=40 the median feature has an 

occurrence of 97 %. From nm=60, the mean and median have an overall decreasing trend, which 

reaches zero at nm=640. The maximum value across all features and the number of 

measurements for the Končar group is 77 %. At 90 % level, the Siemens group has 3 reliable 

features from nm=520 and 2 features for a low number of measurements, mean and median at 

nm=40. The feature approach can therefore be used to detect a broken rotor bar in Siemens 

motors. For Končar motors, the feature approach is not a reliable method for BRB detection. 

The third approach to detect BRB is the FFT. The analysis is performed for all 1000 

measurements for each motor of each group. The influence of the number of measurements is 

analysed afterwards. The measurement matrix of each motor is formed by adding the emf values 

of each coil. The FFT is then applied. The amplitudes are averaged over the frequencies for 
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each motor/motor state. The averaged frequency spectra are analysed for the frequency interval 

0-100 Hz. For a given interval, two healthy and one faulty motor are graphically compared with 

averaged frequency spectra. First, the frequency values of the indicators for BRB fault are 

calculated based on the average speed of the motors. Then the frequency spectrum for the BRB 

indicators is analysed harmonic by harmonic. For the Siemens group, 11 frequency indicators 

are identified and for the Končar group 8. Based on 1000 measurements for each motor/motor 

state with the FFT approach, a BRB fault can be reliably detected. 

The influence of the number of measurements was also analysed on the basis of the 

measurement matrix formed by emf adding of each coil. Corresponding intervals were 

determined using the determined frequency indicators based on 1000 measurements. The 

Siemens group has 11 reference intervals and the Končar group has 8. For each motor/motor 

state the selected number of measurements was randomly performed 100 times and this was 

repeated in 30 iterations. At each iteration, the number of times the faulty motor had a higher 

amplitude compared to healthy motors was counted. After a series of 30 counts had been 

performed, the mean and standard deviation were calculated. The number of measurements for 

which this approach was tested was: 1, 2, 3, 4, 5 and 10. For Siemens and the Končar group, 

the different frequency components were found to have a different dependency pattern. Some 

components decrease in mean value, for others the mean value increases slowly and for some 

the value converges to the maximum at 5 measurements. If the level for reliable BRB detection 

is set to 90% and 1 random measurement is taken, then the Siemens group would have 5 out of 

11 frequency indicators, while the Končar group would have none. At a level of 90% and 5 

random measurements, Siemens would have 7 out of 11 and Končar 2 out of 8 frequency 

indicators. Finally, with 10 random measurements, Siemens would have 9 out of 11 and Končar 

3 out of 8 frequency indicators. The FFT approach with 10 random measurements can reliably 

detect BRB fault for Siemens and Končar. The only frequency component that fulfils 90% of 

the level in 10 random measurements and occurs in both groups is 𝑠̅𝑓𝑠. 

Limitations of this study are the number and type of motors, i.e. the experiments were 

performed on four SCIMs, the severity of the fault, i.e. only the case of a one broken bar was 

investigated, the laboratory conditions, i.e. the absence of an industrial environment 

(electromagnetic interference from other electrical equipment), the duration and sampling 

frequency of the measurement were kept constant throughout the experiment, i.e. their influence 

on reliable BRB detection was not investigated, and the fact that the analysis of a healthy motor 

is needed as a reference for the detection of a broken rotor fault. 
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For future research, there are several possibilities to be explored: the influence of a shorter 

measurement time, which would contribute to the practical application of BRB detection with 

the random method, experiments with motors from different manufacturers (in this research it 

has been shown that even motors with the same rated power but not identical technical 

parameters show different behaviour in terms of statistical and feature analysis) and the 

effectiveness of the random method for detecting two broken rotor bars. 
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APPENDIX A: SPEED MEASUREMENT 

Every measurement set containes 50 measuremets. After the last measurementof of each set the 

speed of the motor was read off from the Lucas-Nuelle module CO3636-6V  display and writen 

in Measuremet log.  

The speed for Siemens and Končar group is shown in Table A1. 

 

No. 

Speed [rpm] 

SIEMENS KONČAR 

IM1 IM2_H IM2_BRB1 IM1 IM2_H IM2_BRB1 

1 1439 1435 1428 2809 2795 2785 

2 1438 1435 1427 2808 2794 2786 

3 1438 1434 1427 2806 2795 2785 

4 1439 1434 1428 2808 2796 2785 

5 1440 1434 1427 2807 2796 2786 

6 1438 1435 1427 2807 2794 2786 

7 1437 1437 1427 2807 2794 2785 

8 1437 1437 1428 2808 2795 2786 

9 1438 1437 1427 2807 2795 2787 

10 1437 1437 1428 2807 2796 2787 

11 1436 1437 1427 2808 2797 2788 

12 1436 1436 1426 2809 2796 2787 

13 1437 1435 1426 2809 2797 2788 

14 1437 1435 1428 2807 2796 2786 

15 1437 1436 1428 2806 2795 2788 

16 1436 1436 1428 2806 2795 2787 

17 1436 1436 1428 2808 2796 2788 

18 1437 1434 1427 2808 2795 2787 

19 1437 1435 1429 2809 2796 2786 

20 1437 1435 1427 2809 2796 2787 

Mean 1437.35 1435.5 1427.4 2807,65 2795,45 2786,5 

Std 1.08 1.10 0.75 1,04 0,89 1,05 

 

 

 

 

 

 

 



 
 

APPENDIX B: MATLAB SCRIPTS 

clc; clear all; close all 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%% MEASUREMENT MATRIX GENERATION %%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% Sampling frequency = 5 kHz 

%% Duration = 20 s 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%% SIEMENS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Load = 3.33 Nm 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% HEALTHY - IM1  %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% QH(1)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M1_TAC41.mat'); 

% QH(2)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M2_TAC41.mat');  

% QH(3)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M3_TAC41.mat');  

% QH(4)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M4_TAC41.mat');  

% QH(5)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M5_TAC41.mat');  

% QH(6)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M6_TAC41.mat');  

% QH(7)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M7_TAC41.mat');  

% QH(8)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M8_TAC41.mat');  

% QH(9)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M9_TAC41.mat');  

% QH(10)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M10_TAC41.mat');  

% QH(11)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M11_TAC41.mat');  

% QH(12)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M12_TAC41.mat');  

% QH(13)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M13_TAC41.mat');  

% QH(14)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M14_TAC41.mat');  

% QH(15)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M15_TAC41.mat');  

% QH(16)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M16_TAC41.mat');  

% QH(17)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M17_TAC41.mat');  

% QH(18)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M18_TAC41.mat');  

% QH(19)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M19_TAC41.mat');  

% QH(20)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM1\H_IM1_M20_TAC41.mat');  

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% HEALTHY - IM2  %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% QH(1)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M1_TAC41.mat');  

% QH(2)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M2_TAC41.mat');  

% QH(3)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M3_TAC41.mat');  

% QH(4)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M4_TAC41.mat');  

% QH(5)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M5_TAC41.mat');  

% QH(6)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M6_TAC41.mat');  

% QH(7)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M7_TAC41.mat');  

% QH(8)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M8_TAC41.mat');  

% QH(9)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M9_TAC41.mat');  

% QH(10)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M10_TAC41.mat');  

% QH(11)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M11_TAC41.mat');  

% QH(12)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M12_TAC41.mat');  

% QH(13)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M13_TAC41.mat');  

% QH(14)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M14_TAC41.mat');  

% QH(15)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M15_TAC41.mat');  

% QH(16)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M16_TAC41.mat');  

% QH(17)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M17_TAC41.mat');  

% QH(18)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M18_TAC41.mat');  

% QH(19)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M19_TAC41.mat'); 

% QH(20)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_H\H_IM2_M20_TAC41.mat'); 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BRB 1 - IM2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

QBRB1(1)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M1_TAC41.mat');  

QBRB1(2)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M2_TAC41.mat');  

QBRB1(3)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M3_TAC41.mat');  

QBRB1(4)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M4_TAC41.mat');  

QBRB1(5)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M5_TAC41.mat');  

QBRB1(6)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M6_TAC41.mat');  

QBRB1(7)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M7_TAC41.mat');  

QBRB1(8)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M8_TAC41.mat');  

QBRB1(9)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M9_TAC41.mat'); 

QBRB1(10)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M10_TAC41.mat');  

QBRB1(11)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M11_TAC41.mat');  

QBRB1(12)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M12_TAC41.mat');  

QBRB1(13)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M13_TAC41.mat');  

QBRB1(14)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M14_TAC41.mat');  

QBRB1(15)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M15_TAC41.mat');  

QBRB1(16)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M16_TAC41.mat');  

QBRB1(17)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M17_TAC41.mat');  

QBRB1(18)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M18_TAC41.mat');  

QBRB1(19)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M19_TAC41.mat');  

QBRB1(20)   =load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS\IM2_BRB1\BRB1_IM2_M20_TAC41.mat'); 

  

 

 

 

 

 



 
 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%% KONCAR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Load = 1.69 Nm 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% HEALTHY - IM1  %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% QH(1)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M1_TAC41.mat');  

% QH(2)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M2_TAC41.mat'); 

% QH(3)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M3_TAC41.mat'); 

% QH(4)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M4_TAC41.mat'); 

% QH(5)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M5_TAC41.mat'); 

% QH(6)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M6_TAC41.mat'); 

% QH(7)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M7_TAC41.mat'); 

% QH(8)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M8_TAC41.mat'); 

% QH(9)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M9_TAC41.mat');  

% QH(10)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M10_TAC41.mat'); 

% QH(11)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M11_TAC41.mat'); 

% QH(12)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M12_TAC41.mat'); 

% QH(13)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M13_TAC41.mat'); 

% QH(14)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M14_TAC41.mat'); 

% QH(15)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M15_TAC41.mat'); 

% QH(16)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M16_TAC41.mat'); 

% QH(17)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M17_TAC41.mat');  

% QH(18)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M18_TAC41.mat'); 

% QH(19)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M19_TAC41.mat'); 

% QH(20)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM1\H_IM1_M20_TAC41.mat'); 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% HEALTHY - IM2  %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% QH(1)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M1_TAC41.mat');  

% QH(2)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M2_TAC41.mat'); 

% QH(3)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M3_TAC41.mat'); 

% QH(4)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M4_TAC41.mat'); 

% QH(5)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M5_TAC41.mat'); 

% QH(6)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M6_TAC41.mat'); 

% QH(7)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M7_TAC41.mat'); 

% QH(8)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M8_TAC41.mat'); 

% QH(9)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M9_TAC41.mat'); 

% QH(10)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M10_TAC41.mat'); 

% QH(11)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M11_TAC41.mat'); 

% QH(12)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M12_TAC41.mat');  

% QH(13)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M13_TAC41.mat'); 

% QH(14)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M14_TAC41.mat'); 

% QH(15)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M15_TAC41.mat'); 

% QH(16)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M16_TAC41.mat'); 

% QH(17)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M17_TAC41.mat'); 

% QH(18)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M18_TAC41.mat'); 

% QH(19)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M19_TAC41.mat'); 

% QH(20)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_H\H_IM2_M20_TAC41.mat'); 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BRB 1 - IM2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% QBRB1(1)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M1_TAC41.mat'); 

% QBRB1(2)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M2_TAC41.mat'); 

% QBRB1(3)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M3_TAC41.mat'); 

% QBRB1(4)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M4_TAC41.mat'); 

% QBRB1(5)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M5_TAC41.mat'); 

% QBRB1(6)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M6_TAC41.mat'); 

% QBRB1(7)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M7_TAC41.mat'); 

% QBRB1(8)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M8_TAC41.mat'); 

% QBRB1(9)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M9_TAC41.mat'); 

% QBRB1(10)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M10_TAC41.mat'); 

% QBRB1(11)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M11_TAC41.mat'); 

% QBRB1(12)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M12_TAC41.mat'); 

% QBRB1(13)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M13_TAC41.mat'); 

% QBRB1(14)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M14_TAC41.mat'); 

% QBRB1(15)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M15_TAC41.mat'); 

% QBRB1(16)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M16_TAC41.mat'); 

% QBRB1(17)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M17_TAC41.mat'); 

% QBRB1(18)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M18_TAC41.mat'); 

% QBRB1(19)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M19_TAC41.mat'); 

% QBRB1(20)   =load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR\IM2_BRB1\BRB1_IM2_M20_TAC41.mat'); 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

N=50;                   % Number of random triaxial coil positions 

NF_H=20;                % Number of files for healthy state 

NF_BRB1=20;             % Number of files for BRB1 state 

  

%% %%%%%%%%%%%%%%%%%%%%%%%% DATA LOADING - HEALTHY %%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%% Separate signals e1(t), e2(t), e3(t) %%%%%%%%%%%%%%%% 

  

% for i=1:NF_H 

%     fnH=fieldnames(QH(i)); 

% for j=1:N 

%     

%     tH{j,i}=seconds(QH(i).(fnH{j}).Time);    % Time vector - Healthy           

%     YH_s1{j,i}=QH(i).(fnH{j}).Dev1_ai0; 

%     YH_s2{j,i}=QH(i).(fnH{j}).Dev1_ai1; 



 
 

%     YH_s3{j,i}=QH(i).(fnH{j}).Dev1_ai2; 

% end 

% end 

  

%% %%%%%%%%%%%%%%%%%%%%%%%% DATA LOADING - BRB1 %%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%% Separate signals e1(t), e2(t), e3(t) %%%%%%%%%%%%%%%% 

  

for i=1:NF_BRB1 

    fnBRB1=fieldnames(QBRB1(i)); 

for j=1:N 

    

    tBRB1{j,i}=seconds(QBRB1(i).(fnBRB1{j}).Time);   % Time vector - BRB1                       

    YBRB1_s1{j,i}=QBRB1(i).(fnBRB1{j}).Dev1_ai0; 

    YBRB1_s2{j,i}=QBRB1(i).(fnBRB1{j}).Dev1_ai1; 

    YBRB1_s3{j,i}=QBRB1(i).(fnBRB1{j}).Dev1_ai2; 

end 

end 

  

%% HEALTHY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% t_H=tH{1,1}(:); 

%  

% count1=0; 

% counter1=0; 

% for i=1:NF_H 

% for j=1:N   

% for k=1:length(tH{1,1}) 

%      

% % S1_H_IM1_M1000(k,j+count1)=YH_s1{j,i}(k); 

% % S2_H_IM1_M1000(k,j+count1)=YH_s2{j,i}(k); 

% % S3_H_IM1_M1000(k,j+count1)=YH_s3{j,i}(k); 

%  

% % S1_H_IM2_M1000(k,j+count1)=YH_s1{j,i}(k); 

% % S2_H_IM2_M1000(k,j+count1)=YH_s2{j,i}(k); 

% % S3_H_IM2_M1000(k,j+count1)=YH_s3{j,i}(k); 

%  

% end 

% counter1=counter1+1; 

% end 

% count1=counter1; 

% end 

  

% save('C:\Users\PFST-User\Desktop\PhD DATA/S_H_IM1_M1000.mat',... 

% 'S1_H_IM1_M1000',... 

% 'S2_H_IM1_M1000',... 

% 'S3_H_IM1_M1000'); 

  

% save('C:\Users\PFST-User\Desktop\PhD DATA/S_H_IM2_M1000.mat',... 

% 'S1_H_IM2_M1000',... 

% 'S2_H_IM2_M1000',... 

% 'S3_H_IM2_M1000'); 

  

% save('C:\Users\PFST-User\Desktop\PhD DATA/K_H_IM1_M1000.mat',... 

% 'S1_H_IM1_M1000',... 

% 'S2_H_IM1_M1000',... 

% 'S3_H_IM1_M1000'); 

  

% save('C:\Users\PFST-User\Desktop\PhD DATA/K_H_IM2_M1000.mat',... 

% 'S1_H_IM2_M1000',... 

% 'S2_H_IM2_M1000',... 

% 'S3_H_IM2_M1000'); 

  

  

%% BRB1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

t_BRB1=tBRB1{1,1}(:); 

  

count2=0; 

counter2=0; 

for i=1:NF_BRB1 

for j=1:N   

for k=1:length(tBRB1{1,1}) 

     

S1_BRB1_IM2_M1000(k,j+count2)=YBRB1_s1{j,i}(k); 

S2_BRB1_IM2_M1000(k,j+count2)=YBRB1_s2{j,i}(k); 

S3_BRB1_IM2_M1000(k,j+count2)=YBRB1_s3{j,i}(k); 

  

  

end 

counter2=counter2+1; 

end 

count2=counter2; 

end 

  

  

save('C:\Users\PFST-User\Desktop\PhD DATA/S_BRB1_IM2_M1000.mat',... 

'S1_BRB1_IM2_M1000',... 

'S2_BRB1_IM2_M1000',... 



 
 

'S3_BRB1_IM2_M1000'); 

  

% save('C:\Users\PFST-User\Desktop\PhD DATA/K_BRB1_IM2_M1000.mat',... 

% 'S1_BRB1_IM2_M1000',... 

% 'S2_BRB1_IM2_M1000',... 

% 'S3_BRB1_IM2_M1000'); 

  
-------------------------------------------------------------- 

 

clear all;close all;clc 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%% HISTOGRAM & QQ plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% SIEMENS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% load('C:\Users\PFST-User\Desktop\PhD DATA\S_H_IM1_M1000.mat')  

% load('C:\Users\PFST-User\Desktop\PhD DATA\S_H_IM2_M1000.mat') 

% load('C:\Users\PFST-User\Desktop\PhD DATA\S_BRB1_IM2_M1000.mat') 

  

%% KONCAR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load('C:\Users\PFST-User\Desktop\PhD DATA\K_H_IM1_M1000.mat')  

load('C:\Users\PFST-User\Desktop\PhD DATA\K_H_IM2_M1000.mat') 

load('C:\Users\PFST-User\Desktop\PhD DATA\K_BRB1_IM2_M1000.mat') 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

IM1_C1=reshape(S1_H_IM1_M1000,[],1); 

IM1_C2=reshape(S2_H_IM1_M1000,[],1); 

IM1_C3=reshape(S3_H_IM1_M1000,[],1); 

  

IM2_H_C1=reshape(S1_H_IM2_M1000,[],1); 

IM2_H_C2=reshape(S2_H_IM2_M1000,[],1); 

IM2_H_C3=reshape(S3_H_IM2_M1000,[],1); 

  

IM2_BRB1_C1=reshape(S1_BRB1_IM2_M1000,[],1); 

IM2_BRB1_C2=reshape(S2_BRB1_IM2_M1000,[],1); 

IM2_BRB1_C3=reshape(S3_BRB1_IM2_M1000,[],1); 

  

IM1_C123=[IM1_C1 IM1_C2 IM1_C3]; 

IM2_H_C123=[IM2_H_C1 IM2_H_C2 IM2_H_C3]; 

IM2_BRB1_C123=[IM2_BRB1_C1 IM2_BRB1_C2 IM2_BRB1_C3]; 

  

%% 

l=length(IM1_C1); 

x=l/10; 

  

IM1_C123_1=IM1_C123(1:x,:); 

IM1_C123_2=IM1_C123(1*x+1:2*x,:); 

IM1_C123_3=IM1_C123(2*x+1:3*x,:); 

IM1_C123_4=IM1_C123(3*x+1:4*x,:); 

IM1_C123_5=IM1_C123(4*x+1:5*x,:); 

IM1_C123_6=IM1_C123(5*x+1:6*x,:); 

IM1_C123_7=IM1_C123(6*x+1:7*x,:); 

IM1_C123_8=IM1_C123(7*x+1:8*x,:); 

IM1_C123_9=IM1_C123(8*x+1:9*x,:); 

IM1_C123_10=IM1_C123(9*x+1:10*x,:); 

  

IM2_H_C123_1=IM2_H_C123(1:x,:); 

IM2_H_C123_2=IM2_H_C123(1*x+1:2*x,:); 

IM2_H_C123_3=IM2_H_C123(2*x+1:3*x,:); 

IM2_H_C123_4=IM2_H_C123(3*x+1:4*x,:); 

IM2_H_C123_5=IM2_H_C123(4*x+1:5*x,:); 

IM2_H_C123_6=IM2_H_C123(5*x+1:6*x,:); 

IM2_H_C123_7=IM2_H_C123(6*x+1:7*x,:); 

IM2_H_C123_8=IM2_H_C123(7*x+1:8*x,:); 

IM2_H_C123_9=IM2_H_C123(8*x+1:9*x,:); 

IM2_H_C123_10=IM2_H_C123(9*x+1:10*x,:); 

  

IM2_BRB1_C123_1=IM2_BRB1_C123(1:x,:); 

IM2_BRB1_C123_2=IM2_BRB1_C123(1*x+1:2*x,:); 

IM2_BRB1_C123_3=IM2_BRB1_C123(2*x+1:3*x,:); 

IM2_BRB1_C123_4=IM2_BRB1_C123(3*x+1:4*x,:); 

IM2_BRB1_C123_5=IM2_BRB1_C123(4*x+1:5*x,:); 

IM2_BRB1_C123_6=IM2_BRB1_C123(5*x+1:6*x,:); 

IM2_BRB1_C123_7=IM2_BRB1_C123(6*x+1:7*x,:); 

IM2_BRB1_C123_8=IM2_BRB1_C123(7*x+1:8*x,:); 

IM2_BRB1_C123_9=IM2_BRB1_C123(8*x+1:9*x,:); 

IM2_BRB1_C123_10=IM2_BRB1_C123(9*x+1:10*x,:); 

%% 

IM1_R_C123_1=reshape(IM1_C123_1,[],1); 

IM1_R_C123_2=reshape(IM1_C123_2,[],1); 

IM1_R_C123_3=reshape(IM1_C123_3,[],1); 



 
 

IM1_R_C123_4=reshape(IM1_C123_4,[],1); 

IM1_R_C123_5=reshape(IM1_C123_5,[],1); 

IM1_R_C123_6=reshape(IM1_C123_6,[],1); 

IM1_R_C123_7=reshape(IM1_C123_7,[],1); 

IM1_R_C123_8=reshape(IM1_C123_8,[],1); 

IM1_R_C123_9=reshape(IM1_C123_9,[],1); 

IM1_R_C123_10=reshape(IM1_C123_10,[],1); 

  

IM2_H_R_C123_1=reshape(IM2_H_C123_1,[],1); 

IM2_H_R_C123_2=reshape(IM2_H_C123_2,[],1); 

IM2_H_R_C123_3=reshape(IM2_H_C123_3,[],1); 

IM2_H_R_C123_4=reshape(IM2_H_C123_4,[],1); 

IM2_H_R_C123_5=reshape(IM2_H_C123_5,[],1); 

IM2_H_R_C123_6=reshape(IM2_H_C123_6,[],1); 

IM2_H_R_C123_7=reshape(IM2_H_C123_7,[],1); 

IM2_H_R_C123_8=reshape(IM2_H_C123_8,[],1); 

IM2_H_R_C123_9=reshape(IM2_H_C123_9,[],1); 

IM2_H_R_C123_10=reshape(IM2_H_C123_10,[],1); 

  

IM2_BRB1_R_C123_1=reshape(IM2_BRB1_C123_1,[],1); 

IM2_BRB1_R_C123_2=reshape(IM2_BRB1_C123_2,[],1); 

IM2_BRB1_R_C123_3=reshape(IM2_BRB1_C123_3,[],1); 

IM2_BRB1_R_C123_4=reshape(IM2_BRB1_C123_4,[],1); 

IM2_BRB1_R_C123_5=reshape(IM2_BRB1_C123_5,[],1); 

IM2_BRB1_R_C123_6=reshape(IM2_BRB1_C123_6,[],1); 

IM2_BRB1_R_C123_7=reshape(IM2_BRB1_C123_7,[],1); 

IM2_BRB1_R_C123_8=reshape(IM2_BRB1_C123_8,[],1); 

IM2_BRB1_R_C123_9=reshape(IM2_BRB1_C123_9,[],1); 

IM2_BRB1_R_C123_10=reshape(IM2_BRB1_C123_10,[],1); 

  

%% 

IM1_R_C123=[IM1_R_C123_1 IM1_R_C123_2 IM1_R_C123_3 IM1_R_C123_4 IM1_R_C123_5 IM1_R_C123_6 IM1_R_C123_7 

IM1_R_C123_8 IM1_R_C123_9 IM1_R_C123_10]; 

IM2_H_R_C123=[IM2_H_R_C123_1 IM2_H_R_C123_2 IM2_H_R_C123_3 IM2_H_R_C123_4 IM2_H_R_C123_5 IM2_H_R_C123_6 

IM2_H_R_C123_7 IM2_H_R_C123_8 IM2_H_R_C123_9 IM2_H_R_C123_10]; 

IM2_BRB1_R_C123=[IM2_BRB1_R_C123_1 IM2_BRB1_R_C123_2 IM2_BRB1_R_C123_3 IM2_BRB1_R_C123_4 IM2_BRB1_R_C123_5 

IM2_BRB1_R_C123_6 IM2_BRB1_R_C123_7 IM2_BRB1_R_C123_8 IM2_BRB1_R_C123_9 IM2_BRB1_R_C123_10]; 

 

%% HISTOGRAM - IM1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

NB=100; % NB - number of bins 

figure,histogram(IM1_R_C123(:,1),NB); 

hold on; 

histogram(IM1_R_C123(:,2),NB); 

histogram(IM1_R_C123(:,3),NB); 

histogram(IM1_R_C123(:,4),NB); 

histogram(IM1_R_C123(:,5),NB); 

histogram(IM1_R_C123(:,6),NB); 

histogram(IM1_R_C123(:,7),NB); 

histogram(IM1_R_C123(:,8),NB); 

histogram(IM1_R_C123(:,9),NB); 

histogram(IM1_R_C123(:,10),NB); 

grid on 

xlim([-0.1 0.1])      % for Siemens 

ylim([0 15e4])        % for Siemens 

  

% xlim([-0.6 0.60000001]) % for KONCAR 

% ylim([0 20e4])          % for KONCAR 

set(gca,'FontSize',16) 

    xlabel('Data value - emf [V]','FontSize',16,'FontWeight','bold') 

    ylabel('Frequency','FontSize',16,'FontWeight','bold') 

legend({    'Day 1', 'Day 2','Day 3','Day 4','Day 5',... 

                'Day 6', 'Day 7','Day 8','Day 9','Day 10'},... 

                

'Location','northeast','Orientation','horizontal','NumColumns',1,'FontSize',14,'FontWeight','bold') 

             

             

%% HISTOGRAM - IM2_H %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        

  

figure,histogram(IM2_H_R_C123(:,1),NB); 

hold on; 

histogram(IM2_H_R_C123(:,2),NB); 

histogram(IM2_H_R_C123(:,3),NB); 

histogram(IM2_H_R_C123(:,4),NB); 

histogram(IM2_H_R_C123(:,5),NB); 

histogram(IM2_H_R_C123(:,6),NB); 

histogram(IM2_H_R_C123(:,7),NB); 

histogram(IM2_H_R_C123(:,8),NB); 

histogram(IM2_H_R_C123(:,9),NB); 

histogram(IM2_H_R_C123(:,10),NB); 

grid on 

xlim([-0.1 0.1])      % for Siemens 

ylim([0 15e4])        % for Siemens 

  

% xlim([-0.6 0.60000001])     % for KONCAR 

% ylim([0 20e4])              % for KONCAR 

set(gca,'FontSize',16) 

    xlabel('Data value - emf [V]','FontSize',16,'FontWeight','bold') 



 
 

    ylabel('Frequency','FontSize',16,'FontWeight','bold') 

legend({    'Day 1', 'Day 2','Day 3','Day 4','Day 5',... 

                'Day 6', 'Day 7','Day 8','Day 9','Day 10'},... 

                

'Location','northeast','Orientation','horizontal','NumColumns',1,'FontSize',14,'FontWeight','bold')             

  

%% HISTOGRAM - IM2_BRB1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%         

  

figure,histogram(IM2_BRB1_R_C123(:,1),NB); 

hold on; 

histogram(IM2_BRB1_R_C123(:,2),NB); 

histogram(IM2_BRB1_R_C123(:,3),NB); 

histogram(IM2_BRB1_R_C123(:,4),NB); 

histogram(IM2_BRB1_R_C123(:,5),NB); 

histogram(IM2_BRB1_R_C123(:,6),NB); 

histogram(IM2_BRB1_R_C123(:,7),NB); 

histogram(IM2_BRB1_R_C123(:,8),NB); 

histogram(IM2_BRB1_R_C123(:,9),NB); 

histogram(IM2_BRB1_R_C123(:,10),NB); 

grid on 

xlim([-0.1 0.1])      % for Siemens 

ylim([0 15e4])        % for Siemens 

  

% xlim([-0.6 0.60000001])     % for KONCAR 

% ylim([0 20e4])              % for KONCAR 

set(gca,'FontSize',16) 

    xlabel('Data value - emf [V]','FontSize',16,'FontWeight','bold') 

    ylabel('Frequency','FontSize',16,'FontWeight','bold') 

legend({    'Day 1', 'Day 2','Day 3','Day 4','Day 5',... 

                'Day 6', 'Day 7','Day 8','Day 9','Day 10'},... 

                

'Location','northeast','Orientation','horizontal','NumColumns',1,'FontSize',14,'FontWeight','bold')   

  

%% 

figure,  

  

hqqp = qqplot(IM1_R_C123); 

% hqqp(1).MarkerSize = 20;                         

% hqqp(2).LineWidth = 5;                           

% hqqp(3).Color = 'g';   

  

legend({    'day 1', 'day 2','day 3','day 4','day 5',... 

                'day 6', 'day 7','day 8','day 9','day 10'},... 

                'Location','southeast','Orientation','horizontal','NumColumns',2,'FontSize',16) 

%%            

figure, qqplot(IM2_H_R_C123) 

legend({    'day 1', 'day 2','day 3','day 4','day 5',... 

                'day 6', 'day 7','day 8','day 9','day 10'},... 

                'Location','southeast','Orientation','horizontal','NumColumns',2,'FontSize',16) 

  

  

%% 

figure, qqplot(IM2_BRB1_R_C123) 

legend({    'day 1', 'day 2','day 3','day 4','day 5',... 

                'day 6', 'day 7','day 8','day 9','day 10'},... 

                'Location','southeast','Orientation','horizontal','NumColumns',2,'FontSize',16) 

             

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%             

  

% save('C:\Users\PFST-User\Desktop\PhD DATA/SIEMENS_C123_M1000.mat',... 

% 'IM1_R_C123',... 

% 'IM2_H_R_C123',... 

% 'IM2_BRB1_R_C123'); 

  

% save('C:\Users\PFST-User\Desktop\PhD DATA/KONCAR_C123_M1000.mat',... 

% 'IM1_R_C123',... 

% 'IM2_H_R_C123',... 

% 'IM2_BRB1_R_C123'); 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
-------------------------------------------------------------- 

 

 

 

 

 

 

 

 



 
 

clc; clear all; close all 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%% RM-ANOVA and Benjamini-Hochberg  %%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS_C123_M1000.mat') 

  

load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR_C123_M1000.mat') 

  

  

%% ONE-WAY REPEATED MEASURES ANOVA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

t_IM1 = table(      IM1_R_C123(:,1),IM1_R_C123(:,2),IM1_R_C123(:,3),IM1_R_C123(:,4),IM1_R_C123(:,5),... 

                    IM1_R_C123(:,6),IM1_R_C123(:,7),IM1_R_C123(:,8),IM1_R_C123(:,9),IM1_R_C123(:,10),... 

                    'VariableNames',{'d1','d2','d3','d4','d5','d6','d7','d8','d9','d10'}); 

  

t_IM2_H = table(    

IM2_H_R_C123(:,1),IM2_H_R_C123(:,2),IM2_H_R_C123(:,3),IM2_H_R_C123(:,4),IM2_H_R_C123(:,5),... 

                    

IM2_H_R_C123(:,6),IM2_H_R_C123(:,7),IM2_H_R_C123(:,8),IM2_H_R_C123(:,9),IM2_H_R_C123(:,10),... 

                    'VariableNames',{'d1','d2','d3','d4','d5','d6','d7','d8','d9','d10'}); 

  

t_IM2_BRB1 = table( 

IM2_BRB1_R_C123(:,1),IM2_BRB1_R_C123(:,2),IM2_BRB1_R_C123(:,3),IM2_BRB1_R_C123(:,4),IM2_BRB1_R_C123(:,5),..

. 

                    

IM2_BRB1_R_C123(:,6),IM2_BRB1_R_C123(:,7),IM2_BRB1_R_C123(:,8),IM2_BRB1_R_C123(:,9),IM2_BRB1_R_C123(:,10),.

.. 

                    'VariableNames',{'d1','d2','d3','d4','d5','d6','d7','d8','d9','d10'}); 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

T = table([1 2 3 4 5 6 7 8 9 10]','VariableNames',{'day'}); 

  

% withinDesign = table([1 2 3 4 5 6 7 8 9 10]', 'VariableNames', {'Time'}); 

% withinDesign.Time = categorical(withinDesign.Time); 

  

rm_IM1 = fitrm(t_IM1,'d1-d10 ~ 1','WithinDesign', T); 

rm_IM2_H = fitrm(t_IM2_H,'d1-d10 ~ 1','WithinDesign', T); 

rm_IM2_BRB1 = fitrm(t_IM2_BRB1,'d1-d10 ~ 1','WithinDesign', T); 

  

RMAT_IM1 = ranova(rm_IM1) 

RMAT_IM2_H = ranova(rm_IM2_H) 

RMAT_IM2_BRB1 = ranova(rm_IM2_BRB1) 

  

% tbl=multcompare(rm,'day') 

  

% tbl_H4=multcompare(rm_H4,'day','ComparisonType','bonferroni') 

% tbl_H5=multcompare(rm_H5,'day','ComparisonType','bonferroni') 

% tbl_B=multcompare(rm_B,'day','ComparisonType','bonferroni') 

  

%% ComparisonType = 'lsd' - PRETPOSTAVKA ZA Benjamini-Hochberg correction 

%% MATLAB Definition: Least significant difference. This option uses plain t-tests... 

%% ...It provides no protection against the multiple comparison problem. 

str1='lsd'; 

tbl_IM1=multcompare(rm_IM1,'day','ComparisonType',str1) 

tbl_IM2_H=multcompare(rm_IM2_H,'day','ComparisonType',str1) 

tbl_IM2_BRB1=multcompare(rm_IM2_BRB1,'day','ComparisonType',str1) 

  

TBL_IM1= 

[tbl_IM1(1:9,:);tbl_IM1(11:18,:);tbl_IM1(21:27,:);tbl_IM1(31:36,:);tbl_IM1(41:45,:);tbl_IM1(51:54,:);tbl_IM

1(61:63,:);tbl_IM1(71:72,:);tbl_IM1(81,:)]; 

TBL_IM2_H= 

[tbl_IM2_H(1:9,:);tbl_IM2_H(11:18,:);tbl_IM2_H(21:27,:);tbl_IM2_H(31:36,:);tbl_IM2_H(41:45,:);tbl_IM2_H(51:

54,:);tbl_IM2_H(61:63,:);tbl_IM2_H(71:72,:);tbl_IM2_H(81,:)]; 

TBL_IM2_BRB1=  

[tbl_IM2_BRB1(1:9,:);tbl_IM2_BRB1(11:18,:);tbl_IM2_BRB1(21:27,:);tbl_IM2_BRB1(31:36,:);tbl_IM2_BRB1(41:45,:

);tbl_IM2_BRB1(51:54,:);tbl_IM2_BRB1(61:63,:);tbl_IM2_BRB1(71:72,:);tbl_IM2_BRB1(81,:)]; 

  

% figure,stem(TBL_H4.pValue) 

% figure,stem(TBL_H5.pValue) 

% figure,stem(TBL_B.pValue) 

  

mm_IM1=margmean(rm_IM1,'day'); 

mm_IM2_H=margmean(rm_IM2_H,'day'); 

mm_IM2_BRB1=margmean(rm_IM2_BRB1,'day'); 

  

mTEST_IM1=mauchly(rm_IM1); 

mTEST_IM2_H=mauchly(rm_IM2_H); 

mTEST_IM2_BRB1=mauchly(rm_IM2_BRB1); 

  

%% STEM PLOT IM1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure,stem(TBL_IM1.pValue,'filled','LineWidth',2) 

hold on 

yline(0.05,'r-','\alpha=0.05','LineWidth',2,'FontSize',18,'FontWeight','bold') 



 
 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

xticklabels({   '1-2','1-3','1-4','1-5','1-6','1-7','1-8','1-9','1-10',... 

                '2-3','2-4','2-5','2-6','2-7','2-8','2-9','2-10',... 

                '3-4','3-5','3-6','3-7','3-8','3-9','3-10',... 

                '4-5','4-6','4-7','4-8','4-9','4-10',... 

                '5-6','5-7','5-8','5-9','5-10',... 

                '6-7','6-8','6-9','6-10',... 

                '7-8','7-9','7-10',... 

                '8-9','8-10',... 

                '9-10'}) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-value','FontSize',18,'FontWeight','bold') 

% title('Multiple comparison - IM1')  

  

%% STEM PLOT IM2_H %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure,stem(TBL_IM2_H.pValue,'filled','LineWidth',2) 

hold on 

yline(0.05,'r-','\alpha=0.05','LineWidth',2,'FontSize',18,'FontWeight','bold') 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

xticklabels({   '1-2','1-3','1-4','1-5','1-6','1-7','1-8','1-9','1-10',... 

                '2-3','2-4','2-5','2-6','2-7','2-8','2-9','2-10',... 

                '3-4','3-5','3-6','3-7','3-8','3-9','3-10',... 

                '4-5','4-6','4-7','4-8','4-9','4-10',... 

                '5-6','5-7','5-8','5-9','5-10',... 

                '6-7','6-8','6-9','6-10',... 

                '7-8','7-9','7-10',... 

                '8-9','8-10',... 

                '9-10'}) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-value','FontSize',18,'FontWeight','bold') 

% title('Multiple comparison - IM1')  

  

%% STEM PLOT IM2_BRB1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure,stem(TBL_IM2_BRB1.pValue,'filled','LineWidth',2) 

hold on 

yline(0.05,'r-','\alpha=0.05','LineWidth',2,'FontSize',18,'FontWeight','bold') 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

xticklabels({   '1-2','1-3','1-4','1-5','1-6','1-7','1-8','1-9','1-10',... 

                '2-3','2-4','2-5','2-6','2-7','2-8','2-9','2-10',... 

                '3-4','3-5','3-6','3-7','3-8','3-9','3-10',... 

                '4-5','4-6','4-7','4-8','4-9','4-10',... 

                '5-6','5-7','5-8','5-9','5-10',... 

                '6-7','6-8','6-9','6-10',... 

                '7-8','7-9','7-10',... 

                '8-9','8-10',... 

                '9-10'}) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-value','FontSize',18,'FontWeight','bold') 

% title('Multiple comparison - IM1')  

  

%% Benjamini-Hochberg correction - IM1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

Comb=nchoosek([1:1:10],2); 

  

P_IM1=[Comb TBL_IM1.pValue]; 

Sort_IM1=sortrows(P_IM1,3); 

BiH_IM1=[Sort_IM1 (((1:1:45)./45)*0.05)']; 

  

figure,plot(BiH_IM1(:,3),'LineWidth',3) 

hold on 

plot(BiH_IM1(:,4),'LineWidth',3) 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

  

 str1=string(Sort_IM1(:,1)); 

 str2=string(Sort_IM1(:,2)); 

 str_IM1=append(str1,'-',str2); 

  

xticklabels(str_IM1) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-Value','FontSize',18,'FontWeight','bold') 

title('Benjamini-Hochberg correction - IM1') 

legend({'Sorted p-Values','y=(i/45)Q, i=1,2,...,45'},... 

                

'Location','east','Orientation','horizontal','NumColumns',1,'FontSize',20,'FontWeight','bold') 

             

%% Benjamini-Hochberg correction - IM2_H %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  

P_IM2_H=[Comb TBL_IM2_H.pValue]; 

Sort_IM2_H=sortrows(P_IM2_H,3); 

BiH_IM2_H=[Sort_IM2_H (((1:1:45)./45)*0.05)']; 



 
 

  

figure,plot(BiH_IM2_H(:,3),'LineWidth',3) 

hold on 

plot(BiH_IM2_H(:,4),'LineWidth',3) 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

  

 str1=string(Sort_IM2_H(:,1)); 

 str2=string(Sort_IM2_H(:,2)); 

 str_IM2_H=append(str1,'-',str2); 

  

xticklabels(str_IM2_H) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-Value','FontSize',18,'FontWeight','bold') 

title('Benjamini-Hochberg correction - IM2\_H') 

legend({'Sorted p-Values','y=(i/45)Q, i=1,2,...,45'},... 

                

'Location','east','Orientation','horizontal','NumColumns',1,'FontSize',20,'FontWeight','bold') 

             

%% Benjamini-Hochberg correction - IM2_BRB1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

P_IM2_BRB1=[Comb TBL_IM2_BRB1.pValue]; 

Sort_IM2_BRB1=sortrows(P_IM2_BRB1,3); 

BiH_IM2_BRB1=[Sort_IM2_BRB1 (((1:1:45)./45)*0.05)']; 

  

figure,plot(BiH_IM2_BRB1(:,3),'LineWidth',3) 

hold on 

plot(BiH_IM2_BRB1(:,4),'LineWidth',3) 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

  

 str1=string(Sort_IM2_BRB1(:,1)); 

 str2=string(Sort_IM2_BRB1(:,2)); 

 str_IM2_BRB1=append(str1,'-',str2); 

  

xticklabels(str_IM2_BRB1) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-Value','FontSize',18,'FontWeight','bold') 

title('Benjamini-Hochberg correction - IM2\_BRB1') 

legend({'Sorted p-Values','y=(i/45)Q, i=1,2,...,45'},... 

                

'Location','east','Orientation','horizontal','NumColumns',1,'FontSize',20,'FontWeight','bold') 

             

%% Benjamini-Hochberg correction - IM1, IM2_H and IM2_BRB1 %%%%%%%%%%%%%%%% 

  

figure,plot(BiH_IM1(:,3),'LineWidth',3) 

hold on 

plot(BiH_IM2_H(:,3),'LineWidth',3) 

plot(BiH_IM2_BRB1(:,3),'LineWidth',3) 

plot(BiH_IM1(:,4),'LineWidth',3) 

  

set(gca,'FontSize',18) 

xticks([1:1:45]) 

  

xticklabels(str_IM1) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-value','FontSize',18,'FontWeight','bold') 

  

lgd=legend({'Sorted p-values - IM1','Sorted p-values - IM2\_H','Sorted p-values - IM2\_BRB1','y=(i/45)Q, 

i=1,2,...,45; Q=0.05'},... 

                

'Location','east','Orientation','horizontal','NumColumns',1,'FontSize',20,'FontWeight','bold') 

  

set(lgd,'position',[ 0.4 0.2 0.7311  0.3331 ]) 

 

-------------------------------------------------------------- 
 

 

 

clc; clear all; close all 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%% RM-ANOVA BRB detection  %%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS_C123_M1000.mat') 

  

load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR_C123_M1000.mat') 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  



 
 

Mot1=repmat('Mot1',90005400,1); 

Mot2=repmat('Mot2',90005400,1); 

Mot3=repmat('Mot3',90005400,1); 

  

MOT=[Mot1;Mot2;Mot3]; 

  

X=[ IM1_R_C123(:,1) IM1_R_C123(:,2) IM1_R_C123(:,3) IM1_R_C123(:,4) IM1_R_C123(:,5)... 

    IM1_R_C123(:,6) IM1_R_C123(:,7) IM1_R_C123(:,8) IM1_R_C123(:,9) IM1_R_C123(:,10);... 

    IM2_H_R_C123(:,1) IM2_H_R_C123(:,2) IM2_H_R_C123(:,3) IM2_H_R_C123(:,4) IM2_H_R_C123(:,5)... 

    IM2_H_R_C123(:,6) IM2_H_R_C123(:,7) IM2_H_R_C123(:,8) IM2_H_R_C123(:,9) IM2_H_R_C123(:,10);... 

    IM2_BRB1_R_C123(:,1) IM2_BRB1_R_C123(:,2) IM2_BRB1_R_C123(:,3) IM2_BRB1_R_C123(:,4) 

IM2_BRB1_R_C123(:,5),... 

    IM2_BRB1_R_C123(:,6) IM2_BRB1_R_C123(:,7) IM2_BRB1_R_C123(:,8) IM2_BRB1_R_C123(:,9) 

IM2_BRB1_R_C123(:,10)]; 

  

%% 

t = table(  MOT,X(:,1),X(:,2),X(:,3),X(:,4),X(:,5),X(:,6),X(:,7),X(:,8),X(:,9),X(:,10),... 

            'VariableNames',{'Motor','d1','d2','d3','d4','d5','d6','d7','d8','d9','d10'}); 

             

  

T = table([1 2 3 4 5 6 7 8 9 10]','VariableNames',{'day'}); 

withinDesign = table([1 2 3 4 5 6 7 8 9 10]', 'VariableNames', {'day'}); 

withinDesign.day = categorical(withinDesign.day); 

  

%% 

rm = fitrm(t,'d1-d10 ~ Motor', 'WithinDesign', withinDesign); 

  

RMAT = ranova(rm,'WithinModel', 'day') 

  

ROW1=RMAT(4,1:5) % Intercept(day) 

ROW2=RMAT(2,1:5) % Motor 

ROW3=RMAT(5,1:5) % Mot:day 

ROW4=RMAT(6,1:5) % Mot:day 

  

mm_day=margmean(rm,'day'); 

  

mTEST=mauchly(rm); 

  

tbl_Mot=multcompare(rm,'Motor','ComparisonType','lsd') 

tbl_day=multcompare(rm,'day','ComparisonType','lsd') 

  

  

%% 

  

mm_Mot=margmean(rm,'Motor') 

  

EB1=errorbar([1],[tbl_Mot.Difference(1)],[(tbl_Mot.Upper(1)-tbl_Mot.Lower(1))./2 

],'o','MarkerSize',2.5,'Color', 'b','MarkerFaceColor','b'); 

hold on 

EB2=errorbar([2],[tbl_Mot.Difference(2)],[(tbl_Mot.Upper(2)-tbl_Mot.Lower(2))./2 

],'o','MarkerSize',2.5,'Color', 'r','MarkerFaceColor','r'); 

EB3=errorbar([3],[tbl_Mot.Difference(4)],[(tbl_Mot.Upper(4)-tbl_Mot.Lower(4))./2 

],'o','MarkerSize',2.5,'Color', 'r','MarkerFaceColor','r'); 

grid on 

set(gca,'FontSize',16) 

xlim([0.7 3.3]) 

xticks([0 1 2 3 4]) 

xticklabels({'','IM1-IM2\_H','IM1-IM2\_BRB1','IM2\_H-IM2\_BRB1',''}) 

ylabel('Estimated difference of means [V]','FontSize',16,'FontWeight','bold') 

xlabel('Motor combination','FontSize',16,'FontWeight','bold') 

  
-------------------------------------------------------------- 
  

 

 

clc; clear all; close all 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%% FRIEDMAN and Benjamini-Hochberg  %%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS_C123_M1000.mat') 

  

% load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR_C123_M1000.mat') 

  

%% 

[p_IM1,tbl_IM1,stats_IM1] = friedman(IM1_R_C123); 

[p_IM2_H,tbl_IM2_H,stats_IM2_H] = friedman(IM2_H_R_C123); 

[p_IM2_BRB1,tbl_IM2_BRB1,stats_IM2_BRB1] = friedman(IM2_BRB1_R_C123); 

  

% multcompare za Friedman test: http://www.ece.northwestern.edu/local-

apps/matlabhelp/toolbox/stats/multcompare.html 

c_IM1 = multcompare(stats_IM1,0.05,'on','lsd'); 

c_IM2_H = multcompare(stats_IM2_H,0.05,'on','lsd'); 

c_IM2_BRB1 = multcompare(stats_IM2_BRB1,0.05,'on','lsd'); 

  



 
 

%% STEM - IM1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure,stem(c_IM1(:,6),'filled','LineWidth',2) 

hold on 

yline(0.05,'r-','\alpha=0.05','LineWidth',2,'FontSize',18,'FontWeight','bold') 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

xticklabels({   '1-2','1-3','1-4','1-5','1-6','1-7','1-8','1-9','1-10',... 

                '2-3','2-4','2-5','2-6','2-7','2-8','2-9','2-10',... 

                '3-4','3-5','3-6','3-7','3-8','3-9','3-10',... 

                '4-5','4-6','4-7','4-8','4-9','4-10',... 

                '5-6','5-7','5-8','5-9','5-10',... 

                '6-7','6-8','6-9','6-10',... 

                '7-8','7-9','7-10',... 

                '8-9','8-10',... 

                '9-10'}) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-value','FontSize',18,'FontWeight','bold') 

  

%% STEM - IM2_H %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure,stem(c_IM2_H(:,6),'filled','LineWidth',2) 

hold on 

yline(0.05,'r-','\alpha=0.05','LineWidth',2,'FontSize',18,'FontWeight','bold') 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

xticklabels({   '1-2','1-3','1-4','1-5','1-6','1-7','1-8','1-9','1-10',... 

                '2-3','2-4','2-5','2-6','2-7','2-8','2-9','2-10',... 

                '3-4','3-5','3-6','3-7','3-8','3-9','3-10',... 

                '4-5','4-6','4-7','4-8','4-9','4-10',... 

                '5-6','5-7','5-8','5-9','5-10',... 

                '6-7','6-8','6-9','6-10',... 

                '7-8','7-9','7-10',... 

                '8-9','8-10',... 

                '9-10'}) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-value','FontSize',18,'FontWeight','bold') 

  

%% STEM - IM2_BRB1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure,stem(c_IM2_BRB1(:,6),'filled','LineWidth',2) 

hold on 

yline(0.05,'r-','\alpha=0.05','LineWidth',2,'FontSize',18,'FontWeight','bold') 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

xticklabels({   '1-2','1-3','1-4','1-5','1-6','1-7','1-8','1-9','1-10',... 

                '2-3','2-4','2-5','2-6','2-7','2-8','2-9','2-10',... 

                '3-4','3-5','3-6','3-7','3-8','3-9','3-10',... 

                '4-5','4-6','4-7','4-8','4-9','4-10',... 

                '5-6','5-7','5-8','5-9','5-10',... 

                '6-7','6-8','6-9','6-10',... 

                '7-8','7-9','7-10',... 

                '8-9','8-10',... 

                '9-10'}) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-value','FontSize',18,'FontWeight','bold') 

  

%% Benjamini-Hochberg correction - IM1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

Comb=nchoosek([1:1:10],2); 

  

P_IM1=[Comb c_IM1(:,6)]; 

Sort_IM1=sortrows(P_IM1,3); 

BiH_IM1=[Sort_IM1 (((1:1:45)./45)*0.05)']; 

  

figure,plot(BiH_IM1(:,3),'LineWidth',3) 

hold on 

plot(BiH_IM1(:,4),'LineWidth',3) 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

  

 str1=string(Sort_IM1(:,1)); 

 str2=string(Sort_IM1(:,2)); 

 str_IM1=append(str1,'-',str2); 

  

xticklabels(str_IM1) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-Value','FontSize',18,'FontWeight','bold') 

title('Benjamini-Hochberg correction - IM1') 

legend({'Sorted p-Values','y=(i/45)Q, i=1,2,...,45'},... 

                

'Location','east','Orientation','horizontal','NumColumns',1,'FontSize',20,'FontWeight','bold') 

  

%% Benjamini-Hochberg correction - IM2_H %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

Comb=nchoosek([1:1:10],2); 

  



 
 

P_IM2_H=[Comb c_IM2_H(:,6)]; 

Sort_IM2_H=sortrows(P_IM2_H,3); 

BiH_IM2_H=[Sort_IM2_H (((1:1:45)./45)*0.05)']; 

  

figure,plot(BiH_IM2_H(:,3),'LineWidth',3) 

hold on 

plot(BiH_IM2_H(:,4),'LineWidth',3) 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

  

 str1=string(Sort_IM2_H(:,1)); 

 str2=string(Sort_IM2_H(:,2)); 

 str_IM2_H=append(str1,'-',str2); 

  

xticklabels(str_IM2_H) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-Value','FontSize',18,'FontWeight','bold') 

title('Benjamini-Hochberg correction - IM2\_H') 

legend({'Sorted p-Values','y=(i/45)Q, i=1,2,...,45'},... 

                

'Location','east','Orientation','horizontal','NumColumns',1,'FontSize',20,'FontWeight','bold') 

             

%% Benjamini-Hochberg correction - IM2_BRB1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

Comb=nchoosek([1:1:10],2); 

  

P_IM2_BRB1=[Comb c_IM2_BRB1(:,6)]; 

Sort_IM2_BRB1=sortrows(P_IM2_BRB1,3); 

BiH_IM2_BRB1=[Sort_IM2_BRB1 (((1:1:45)./45)*0.05)']; 

  

figure,plot(BiH_IM2_BRB1(:,3),'LineWidth',3) 

hold on 

plot(BiH_IM2_BRB1(:,4),'LineWidth',3) 

set(gca,'FontSize',18) 

xticks([1:1:45]) 

  

 str1=string(Sort_IM2_BRB1(:,1)); 

 str2=string(Sort_IM2_BRB1(:,2)); 

 str_IM2_BRB1=append(str1,'-',str2); 

  

xticklabels(str_IM2_BRB1) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-Value','FontSize',18,'FontWeight','bold') 

title('Benjamini-Hochberg correction - IM2\_BRB1') 

legend({'Sorted p-Values','y=(i/45)Q, i=1,2,...,45'},... 

                

'Location','east','Orientation','horizontal','NumColumns',1,'FontSize',20,'FontWeight','bold') 

%% Benjamini-Hochberg correction - IM1, IM2_H and IM2_BRB1 %%%%%%%%%%%%%%%% 

  

figure,plot(BiH_IM1(:,3),'LineWidth',3) 

hold on 

plot(BiH_IM2_H(:,3),'LineWidth',3) 

plot(BiH_IM2_BRB1(:,3),'LineWidth',3) 

plot(BiH_IM1(:,4),'LineWidth',3) 

  

set(gca,'FontSize',18) 

xticks([1:1:45]) 

  

xticklabels(str_IM1) 

xtickangle(90) 

xlabel('day combination','FontSize',18,'FontWeight','bold') 

ylabel('p-Value','FontSize',18,'FontWeight','bold') 

ylabel('p-Value','FontSize',18,'FontWeight','bold') 

  

lgd=legend({'Sorted p-values - IM1','Sorted p-values - IM2\_H','Sorted p-values - IM2\_BRB1','y=(i/45)Q, 

i=1,2,...,45; Q=0.05'},... 

                

'Location','east','Orientation','horizontal','NumColumns',1,'FontSize',20,'FontWeight','bold') 

  

set(lgd,'position',[ 0.4 0.2 0.7311  0.3331 ]) 

  
-------------------------------------------------------------- 

 

 
clc; clear all; close all 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%% FRIEDMAN BRB detection  %%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% load('C:\Users\PFST-User\Desktop\PhD DATA\SIEMENS_C123_M1000.mat') 

  

load('C:\Users\PFST-User\Desktop\PhD DATA\KONCAR_C123_M1000.mat') 



 
 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

IM1=[ IM1_R_C123(:,1)' IM1_R_C123(:,2)' IM1_R_C123(:,3)' IM1_R_C123(:,4)' IM1_R_C123(:,5)'... 

    IM1_R_C123(:,6)' IM1_R_C123(:,7)' IM1_R_C123(:,8)' IM1_R_C123(:,9)' IM1_R_C123(:,10)']'; 

     

IM2_H=[ IM2_H_R_C123(:,1)' IM2_H_R_C123(:,2)' IM2_H_R_C123(:,3)' IM2_H_R_C123(:,4)' IM2_H_R_C123(:,5)'... 

    IM2_H_R_C123(:,6)' IM2_H_R_C123(:,7)' IM2_H_R_C123(:,8)' IM2_H_R_C123(:,9)' IM2_H_R_C123(:,10)']'; 

  

IM2_BRB1=[ IM2_BRB1_R_C123(:,1)' IM2_BRB1_R_C123(:,2)' IM2_BRB1_R_C123(:,3)' IM2_BRB1_R_C123(:,4)' 

IM2_BRB1_R_C123(:,5)'... 

    IM2_BRB1_R_C123(:,6)' IM2_BRB1_R_C123(:,7)' IM2_BRB1_R_C123(:,8)' IM2_BRB1_R_C123(:,9)' 

IM2_BRB1_R_C123(:,10)']'; 

  

MOT=[IM1 IM2_H IM2_BRB1]; 

  

[p_M,tbl_M,stats_M] = friedman(MOT) 

  

% c_M = multcompare(stats_M,0.05,'on','lsd') 

%% 

[c,m,h,gnames] = multcompare(stats_M,0.05,'on','lsd') 

%% 

tbl = array2table(c,"VariableNames",["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"]) 

  

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

EB1=errorbar([1],[c(1,4)],[(c(1,5)-c(1,3))./2 ],'o','MarkerSize',2.5,'Color', 'b','MarkerFaceColor','b'); 

hold on 

EB2=errorbar([2],[c(2,4)],[(c(2,5)-c(2,3))./2 ],'o','MarkerSize',2.5,'Color', 'r','MarkerFaceColor','r'); 

EB3=errorbar([3],[c(3,4)],[(c(3,5)-c(3,3))./2 ],'o','MarkerSize',2.5,'Color', 'r','MarkerFaceColor','r'); 

  

set(gca,'FontSize',16) 

xlim([0.5 3.5]) 

  

xticks([0 1 2 3 4]) 

xticklabels({'','IM1-IM2\_H','IM1-IM2\_BRB1','IM2\_H-IM2\_BRB1',''}) 

ylabel('Estimated difference of means ranks','FontSize',16,'FontWeight','bold') 

xlabel('Motor combination','FontSize',16,'FontWeight','bold') 

  

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

-------------------------------------------------------------- 

 

 
tic 

clc; clear all; close all 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%% FEATURE Analysis  %%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% SIEMENS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load('C:\Users\PFST-User\Desktop\PhD DATA\S_H_IM1_M1000.mat')  

load('C:\Users\PFST-User\Desktop\PhD DATA\S_H_IM2_M1000.mat') 

load('C:\Users\PFST-User\Desktop\PhD DATA\S_BRB1_IM2_M1000.mat') 

  

%% KONCAR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% load('C:\Users\PFST-User\Desktop\PhD DATA\K_H_IM1_M1000.mat')  

% load('C:\Users\PFST-User\Desktop\PhD DATA\K_H_IM2_M1000.mat') 

% load('C:\Users\PFST-User\Desktop\PhD DATA\K_BRB1_IM2_M1000.mat') 

  

%% EQ1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

M1=S1_H_IM1_M1000+S2_H_IM1_M1000+S3_H_IM1_M1000; 

M2=S1_H_IM2_M1000+S2_H_IM2_M1000+S3_H_IM2_M1000; 

M3=S1_BRB1_IM2_M1000+S2_BRB1_IM2_M1000+S3_BRB1_IM2_M1000; 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% nm=[20:20:1000]; % nm - number of mesurements 

  

nm=[10]; % nm - number of mesurements 

L_nm=length(nm); 

  

Feature=zeros(19,L_nm); 

Repeat_Count=zeros(19,L_nm); 

  

% If one number of measurement is set, e.g., nm=[60], then use for loop 

% ppp=1:30. If vector nm=[20:20:1000] is used, set ppp=1:1 or erase line 

% for ppp=1:30 and the corresponding end 

  



 
 

for ppp=1:30 

  

for yy=1:L_nm 

  

NoR=100; % Number of repetition 

  

for zz=1:NoR 

  

  

M1=M1(:, randperm(size(M1, 2))); 

M2=M2(:, randperm(size(M2, 2))); 

M3=M3(:, randperm(size(M3, 2))); 

  

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

nd=10; % nd - number of days 

  

nmpd=nm(yy)./nd; % nmpd - number of measurements per day 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

for i=1:nd 

for j=1:nmpd 

     

%% FEATURES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%% F1 - Energy %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_energy(j,i)=sum((abs(M1(:,j+nmpd*(i-1)))).^2,1); 

    M2_energy(j,i)=sum((abs(M2(:,j+nmpd*(i-1)))).^2,1); 

    M3_energy(j,i)=sum((abs(M3(:,j+nmpd*(i-1)))).^2,1); 

%% F2 - Mean %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_mean(j,i)=mean(M1(:,j+nmpd*(i-1)),1); 

    M2_mean(j,i)=mean(M2(:,j+nmpd*(i-1)),1); 

    M3_mean(j,i)=mean(M3(:,j+nmpd*(i-1)),1); 

%% F3 - Std %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_std(j,i)=std(M1(:,j+nmpd*(i-1)),0,1); 

    M2_std(j,i)=std(M2(:,j+nmpd*(i-1)),0,1); 

    M3_std(j,i)=std(M3(:,j+nmpd*(i-1)),0,1); 

%% F4 - Var %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_var(j,i)=var(M1(:,j+nmpd*(i-1)),0,1); 

    M2_var(j,i)=var(M2(:,j+nmpd*(i-1)),0,1); 

    M3_var(j,i)=var(M3(:,j+nmpd*(i-1)),0,1); 

%% F5 - Median %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_median(j,i)=median(M1(:,j+nmpd*(i-1)),1); 

    M2_median(j,i)=median(M2(:,j+nmpd*(i-1)),1); 

    M3_median(j,i)=median(M3(:,j+nmpd*(i-1)),1); 

%% F6 - Kurtosis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_kurtosis(j,i)=kurtosis(M1(:,j+nmpd*(i-1)),1); 

    M2_kurtosis(j,i)=kurtosis(M2(:,j+nmpd*(i-1)),1); 

    M3_kurtosis(j,i)=kurtosis(M3(:,j+nmpd*(i-1)),1); 

%% F7 - Skewness %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_skewness(j,i)=skewness(M1(:,j+nmpd*(i-1)),1); 

    M2_skewness(j,i)=skewness(M2(:,j+nmpd*(i-1)),1); 

    M3_skewness(j,i)=skewness(M3(:,j+nmpd*(i-1)),1); 

%% F8 - RMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_rms(j,i)=rms(M1(:,j+nmpd*(i-1)),1); 

    M2_rms(j,i)=rms(M2(:,j+nmpd*(i-1)),1); 

    M3_rms(j,i)=rms(M3(:,j+nmpd*(i-1)),1); 

%% F9 - RSSQ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_rssq(j,i)=rssq(M1(:,j+nmpd*(i-1)),1); 

    M2_rssq(j,i)=rssq(M2(:,j+nmpd*(i-1)),1); 

    M3_rssq(j,i)=rssq(M3(:,j+nmpd*(i-1)),1); 

%% F10 - IQR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_iqr(j,i)=iqr(M1(:,j+nmpd*(i-1)),1); 

    M2_iqr(j,i)=iqr(M2(:,j+nmpd*(i-1)),1); 

    M3_iqr(j,i)=iqr(M3(:,j+nmpd*(i-1)),1); 

%% F11 - peak2peak %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_peak2peak(j,i)=peak2peak(M1(:,j+nmpd*(i-1)),1); 

    M2_peak2peak(j,i)=peak2peak(M2(:,j+nmpd*(i-1)),1); 

    M3_peak2peak(j,i)=peak2peak(M3(:,j+nmpd*(i-1)),1); 

%% F12 - peak2rms %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_peak2rms(j,i)=peak2rms(M1(:,j+nmpd*(i-1)),1); 

    M2_peak2rms(j,i)=peak2rms(M2(:,j+nmpd*(i-1)),1); 

    M3_peak2rms(j,i)=peak2rms(M3(:,j+nmpd*(i-1)),1); 

%% F13 - Shape factor %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_shapefactor(j,i)=rms(M1(:,j+nmpd*(i-1)),1)./(1/length(M1(:,j+nmpd*(i-1))).*sum(abs(M1(:,j+nmpd*(i-

1))),1)); 

    M2_shapefactor(j,i)=rms(M2(:,j+nmpd*(i-1)),1)./(1/length(M2(:,j+nmpd*(i-1))).*sum(abs(M2(:,j+nmpd*(i-

1))),1)); 

    M3_shapefactor(j,i)=rms(M3(:,j+nmpd*(i-1)),1)./(1/length(M3(:,j+nmpd*(i-1))).*sum(abs(M3(:,j+nmpd*(i-

1))),1)); 

%% F14 - Impulse factor %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_impulsefactor(j,i)=max(abs(M1(:,j+nmpd*(i-1))),[],1)./(1/length(M1(:,j+nmpd*(i-

1))).*sum(abs(M1(:,j+nmpd*(i-1))),1)); 

    M2_impulsefactor(j,i)=max(abs(M2(:,j+nmpd*(i-1))),[],1)./(1/length(M2(:,j+nmpd*(i-

1))).*sum(abs(M2(:,j+nmpd*(i-1))),1)); 

    M3_impulsefactor(j,i)=max(abs(M3(:,j+nmpd*(i-1))),[],1)./(1/length(M3(:,j+nmpd*(i-

1))).*sum(abs(M3(:,j+nmpd*(i-1))),1)); 



 
 

%% F15 - Clearance factor %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_clearancefactor(j,i)=max(abs(M1(:,j+nmpd*(i-1))),[],1)./(1/length(M1(:,j+nmpd*(i-

1))).*sum(sqrt(abs(M1(:,j+nmpd*(i-1)))),1)).^2; 

    M2_clearancefactor(j,i)=max(abs(M2(:,j+nmpd*(i-1))),[],1)./(1/length(M2(:,j+nmpd*(i-

1))).*sum(sqrt(abs(M2(:,j+nmpd*(i-1)))),1)).^2; 

    M3_clearancefactor(j,i)=max(abs(M3(:,j+nmpd*(i-1))),[],1)./(1/length(M3(:,j+nmpd*(i-

1))).*sum(sqrt(abs(M3(:,j+nmpd*(i-1)))),1)).^2; 

%% F16 - Harmonic mean %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_harmmean(j,i)=harmmean(M1(:,j+nmpd*(i-1)),1); 

    M2_harmmean(j,i)=harmmean(M2(:,j+nmpd*(i-1)),1); 

    M3_harmmean(j,i)=harmmean(M3(:,j+nmpd*(i-1)),1); 

%% F17 - Central moment 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_moment5(j,i)=moment(M1(:,j+nmpd*(i-1)),5); 

    M2_moment5(j,i)=moment(M2(:,j+nmpd*(i-1)),5); 

    M3_moment5(j,i)=moment(M3(:,j+nmpd*(i-1)),5); 

%% F18 - Central moment 6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    M1_moment6(j,i)=moment(M1(:,j+nmpd*(i-1)),6); 

    M2_moment6(j,i)=moment(M2(:,j+nmpd*(i-1)),6); 

    M3_moment6(j,i)=moment(M3(:,j+nmpd*(i-1)),6); 

  

end 

end 

  

%% F19 - Waveform length N=1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

N=1; 

M1_waveformlength=zeros(1,nm(yy)); 

M2_waveformlength=zeros(1,nm(yy)); 

M3_waveformlength=zeros(1,nm(yy)); 

LM=length(M1); 

  

  

for ii=1:nm 

for jj=1:(LM-N) 

     

    M1_waveformlength(:,ii)=M1_waveformlength(:,ii)+abs( M1(jj+N,ii)-M1(jj,ii) ); 

    M2_waveformlength(:,ii)=M2_waveformlength(:,ii)+abs( M2(jj+N,ii)-M2(jj,ii) ); 

    M3_waveformlength(:,ii)=M3_waveformlength(:,ii)+abs( M3(jj+N,ii)-M3(jj,ii) ); 

     

end 

end 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

for i=1:nd 

for j=1:nmpd 

     

    M1_WL(j,i)=M1_waveformlength(:,j+nmpd*(i-1)); 

    M2_WL(j,i)=M2_waveformlength(:,j+nmpd*(i-1)); 

    M3_WL(j,i)=M3_waveformlength(:,j+nmpd*(i-1)); 

     

end 

end 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

MOT_energy=[reshape(M1_energy,[],1) reshape(M2_energy,[],1) reshape(M3_energy,[],1)]; 

MOT_mean=[reshape(M1_mean,[],1) reshape(M2_mean,[],1) reshape(M3_mean,[],1)]; 

MOT_std=[reshape(M1_std,[],1) reshape(M2_std,[],1) reshape(M3_std,[],1)]; 

MOT_var=[reshape(M1_var,[],1) reshape(M2_var,[],1) reshape(M3_var,[],1)]; 

MOT_median=[reshape(M1_median,[],1) reshape(M2_median,[],1) reshape(M3_median,[],1)]; 

MOT_kurtosis=[reshape(M1_kurtosis,[],1) reshape(M2_kurtosis,[],1) reshape(M3_kurtosis,[],1)]; 

MOT_skewness=[reshape(M1_skewness,[],1) reshape(M2_skewness,[],1) reshape(M3_skewness,[],1)]; 

MOT_rms=[reshape(M1_rms,[],1) reshape(M2_rms,[],1) reshape(M3_rms,[],1)]; 

MOT_rssq=[reshape(M1_rssq,[],1) reshape(M2_rssq,[],1) reshape(M3_rssq,[],1)]; 

MOT_iqr=[reshape(M1_iqr,[],1) reshape(M2_iqr,[],1) reshape(M3_iqr,[],1)]; 

MOT_peak2peak=[reshape(M1_peak2peak,[],1) reshape(M2_peak2peak,[],1) reshape(M3_peak2peak,[],1)]; 

MOT_peak2rms=[reshape(M1_peak2rms,[],1) reshape(M2_peak2rms,[],1) reshape(M3_peak2rms,[],1)]; 

MOT_shapefactor=[reshape(M1_shapefactor,[],1) reshape(M2_shapefactor,[],1) reshape(M3_shapefactor,[],1)]; 

MOT_impulsefactor=[reshape(M1_impulsefactor,[],1) reshape(M2_impulsefactor,[],1) 

reshape(M3_impulsefactor,[],1)]; 

MOT_clearancefactor=[reshape(M1_clearancefactor,[],1) reshape(M2_clearancefactor,[],1) 

reshape(M3_clearancefactor,[],1)]; 

MOT_harmmean=[reshape(M1_harmmean,[],1) reshape(M2_harmmean,[],1) reshape(M3_harmmean,[],1)]; 

MOT_moment5=[reshape(M1_moment5,[],1) reshape(M2_moment5,[],1) reshape(M3_moment5,[],1)]; 

MOT_moment6=[reshape(M1_moment6,[],1) reshape(M2_moment6,[],1) reshape(M3_moment6,[],1)]; 

MOT_WL=[reshape(M1_WL,[],1) reshape(M2_WL,[],1) reshape(M3_WL,[],1)]; 

  

  

[pF_energyM,tbl_energyM,stats_energyM] = friedman(MOT_energy,1,'off'); 

[pF_meanM,tbl_meanM,stats_meanM] = friedman(MOT_mean,1,'off'); 

[pF_stdM,tbl_stdM,stats_stdM] = friedman(MOT_std,1,'off'); 

[pF_varM,tbl_varM,stats_varM] = friedman(MOT_var,1,'off'); 

[pF_medianM,tbl_medianM,stats_medianM] = friedman(MOT_median,1,'off'); 

[pF_kurtosisM,tbl_kurtosisM,stats_kurtosisM] = friedman(MOT_kurtosis,1,'off'); 

[pF_skewnessM,tbl_skewnessM,stats_skewnessM] = friedman(MOT_skewness,1,'off'); 

[pF_rmsM,tbl_rmsM,stats_rmsM] = friedman(MOT_rms,1,'off'); 

[pF_rssqM,tbl_rssqM,stats_rssqM] = friedman(MOT_rssq,1,'off'); 

[pF_iqrM,tbl_iqrM,stats_iqrM] = friedman(MOT_iqr,1,'off'); 

[pF_peak2peakM,tbl_peak2peakM,stats_peak2peakM] = friedman(MOT_peak2peak,1,'off'); 



 
 

[pF_peak2rmsM,tbl_peak2rmsM,stats_peak2rmsM] = friedman(MOT_peak2rms,1,'off'); 

[pF_shapefactorM,tbl_shapefactorM,stats_shapefactorM] = friedman(MOT_shapefactor,1,'off'); 

[pF_impulsefactorM,tbl_impulsefactorM,stats_impulsefactorM] = friedman(MOT_impulsefactor,1,'off'); 

[pF_clearancefactorM,tbl_clearancefactorM,stats_clearancefactorM] = friedman(MOT_clearancefactor,1,'off'); 

[pF_harmmeanM,tbl_harmmeanM,stats_harmmeanM] = friedman(MOT_harmmean,1,'off'); 

[pF_moment5M,tbl_moment5M,stats_moment5M] = friedman(MOT_moment5,1,'off'); 

[pF_moment6M,tbl_moment6M,stats_moment6M] = friedman(MOT_moment6,1,'off'); 

[pF_WLM,tbl_WLM,stats_WLM] = friedman(MOT_WL,1,'off'); 

  

%  

str2='lsd'; 

[c_energyMOT,m_energyMOT,h_energyMOT,gnames_energyMOT] = multcompare(stats_energyM,0.05,'on',str2); 

[c_meanMOT,m_meanMOT,h_meanMOT,gnames_meanMOT] = multcompare(stats_meanM,0.05,'on',str2); 

[c_stdMOT,m_stdMOT,h_stdMOT,gnames_stdMOT] = multcompare(stats_stdM,0.05,'on',str2); 

[c_varMOT,m_varMOT,h_varMOT,gnames_varMOT] = multcompare(stats_varM,0.05,'on',str2); 

[c_medianMOT,m_medianMOT,h_medianMOT,gnames_medianMOT] = multcompare(stats_medianM,0.05,'on',str2); 

[c_kurtosisMOT,m_kurtosisMOT,h_kurtosisMOT,gnames_kurtosisMOT] = multcompare(stats_rmsM,0.05,'on',str2); 

[c_skewnessMOT,m_skewnessMOT,h_skewnessMOT,gnames_skewnessMOT] = multcompare(stats_rmsM,0.05,'on',str2); 

[c_rmsMOT,m_rmsMOT,h_rmsMOT,gnames_rmsMOT] = multcompare(stats_rmsM,0.05,'on',str2); 

[c_rssqMOT,m_rssqMOT,h_rssqMOT,gnames_rssqMOT] = multcompare(stats_rssqM,0.05,'on',str2); 

[c_iqrMOT,m_iqrMOT,h_iqrMOT,gnames_iqrMOT] = multcompare(stats_iqrM,0.05,'on',str2); 

[c_peak2peakMOT,m_peak2peakMOT,h_peak2peakMOT,gnames_peak2peakMOT] = 

multcompare(stats_peak2peakM,0.05,'on',str2); 

[c_peak2rmsMOT,m_peak2rmsMOT,h_peak2rmsMOT,gnames_peak2rmsMOT] = 

multcompare(stats_peak2rmsM,0.05,'on',str2); 

[c_shapefactorMOT,m_shapefactorMOT,h_shapefactorMOT,gnames_shapefactorMOT] = 

multcompare(stats_shapefactorM,0.05,'on',str2); 

[c_impulsefactorMOT,m_impulsefactorMOT,h_impulsefactorMOT,gnames_impulsefactorMOT] = 

multcompare(stats_impulsefactorM,0.05,'on',str2); 

[c_clearancefactorMOT,m_clearancefactorMOT,h_clearancefactorMOT,gnames_clearancefactorMOT] = 

multcompare(stats_clearancefactorM,0.05,'on',str2); 

[c_harmmeanMOT,m_harmmeanMOT,h_harmmeanMOT,gnames_harmmeanMOT] = 

multcompare(stats_harmmeanM,0.05,'on',str2); 

[c_moment5MOT,m_moment5MOT,h_moment5MOT,gnames_moment5MOT] = multcompare(stats_moment5M,0.05,'on',str2); 

[c_moment6MOT,m_moment6MOT,h_moment6MOT,gnames_moment6MOT] = multcompare(stats_moment6M,0.05,'on',str2); 

[c_WLMOT,m_WLMOT,h_WLMOT,gnames_WLMOT] = multcompare(stats_WLM,0.05,'on',str2); 

  

                c_energyMOT_nm(:,zz)=c_energyMOT(:,6)'; 

                c_meanMOT_nm(:,zz)=c_meanMOT(:,6)'; 

                c_stdMOT_nm(:,zz)=c_stdMOT(:,6)'; 

                c_varMOT_nm(:,zz)=c_varMOT(:,6)'; 

                c_medianMOT_nm(:,zz)=c_medianMOT(:,6)'; 

                c_kurtosisMOT_nm(:,zz)=c_kurtosisMOT(:,6)'; 

                c_skewnessMOT_nm(:,zz)=c_skewnessMOT(:,6)'; 

                c_rmsMOT_nm(:,zz)=c_rmsMOT(:,6)'; 

                c_rssqMOT_nm(:,zz)=c_rssqMOT(:,6)'; 

                c_iqrMOT_nm(:,zz)=c_iqrMOT(:,6)'; 

                c_peak2peakMOT_nm(:,zz)=c_peak2peakMOT(:,6)'; 

                c_peak2rmsMOT_nm(:,zz)=c_peak2rmsMOT(:,6)'; 

                c_shapefactorMOT_nm(:,zz)=c_shapefactorMOT(:,6)'; 

                c_impulsefactorMOT_nm(:,zz)=c_impulsefactorMOT(:,6)'; 

                c_clearancefactorMOT_nm(:,zz)=c_clearancefactorMOT(:,6)'; 

                c_harmmeanMOT_nm(:,zz)=c_harmmeanMOT(:,6)'; 

                c_moment5MOT_nm(:,zz)=c_moment5MOT(:,6)'; 

                c_moment6MOT_nm(:,zz)=c_moment6MOT(:,6)'; 

                c_WLMOT_nm(:,zz)=c_WLMOT(:,6)'; 

                 

  

end 

  

 %% 

c_MOT=[ c_energyMOT_nm c_meanMOT_nm c_stdMOT_nm c_varMOT_nm c_medianMOT_nm... 

        c_kurtosisMOT_nm c_skewnessMOT_nm c_rmsMOT_nm c_rssqMOT_nm c_iqrMOT_nm... 

        c_peak2peakMOT_nm c_peak2rmsMOT_nm c_shapefactorMOT_nm c_impulsefactorMOT_nm... 

        c_clearancefactorMOT_nm.... 

        c_harmmeanMOT_nm c_moment5MOT_nm c_moment6MOT_nm c_WLMOT_nm ]; 

  

%% 

clear Fno_cMOT InIn_cMOT inInt_NoR_cMOT Lo_cMOT Up_cMOT Int_NoR_cMOT indx_cMOT 

  

 for tt=1:length(c_MOT) 

     

    if(c_MOT(1,tt)>0.05 && c_MOT(2,tt)<0.05 && c_MOT(3,tt)<0.05) 

         

        indx_cMOT(tt)=1; 

    else  

        indx_cMOT(tt)=0; 

  

    end 

end 

%% 

InIn_cMOT=find(indx_cMOT);  % InIn - Index Indices 

Fno_cMOT=(ceil([InIn_cMOT]./NoR)); % Fno - Feature Number 

  

Feature(1:length(unique(Fno_cMOT)),yy)=unique(Fno_cMOT)'; 

%% 

    

for ww=1:length(Fno_cMOT) 



 
 

     

    Lo_cMOT=NoR.*Fno_cMOT(ww)-(NoR-1); % First number in interval, e.g., 5 (ww=1) 

    Up_cMOT=NoR.*Fno_cMOT(ww);  % Last number in interval, e.g., 8 (ww=1) 

    Int_NoR_cMOT=[Lo_cMOT:1:Up_cMOT]; % Int_NMind - interval of 4 numbers, e.g., [5 6 7 8] 

     

    for www=1:NoR 

         

        if(Int_NoR_cMOT(www)==InIn_cMOT(ww)) 

            inInt_NoR_cMOT(ww)=www; % returns the indice of number in interval, e.g., Interval=[5 6 7 8], 

Indice=[1 2 3 4]; 

             

            

        else 

              

        end 

    end 

end 

  

%% 

  

  [~,~,ix] = unique(Fno_cMOT); 

CC = accumarray(ix,1); 

  

Repeat_Count(1:length(CC),yy)=CC; 

end 

%% 

  

Feature( ~any(Feature,2), : ) = []; 

Repeat_Count( ~any(Repeat_Count,2), : ) = []; 

FFF=nm.*ones(19,L_nm); 

  

%% 

for hh=1:L_nm 

    for rr=1:length(nonzeros(Feature(:,hh))) 

         

        stem3(Feature(rr,hh),FFF(rr,hh),Repeat_Count(rr,hh)) 

        hold on 

         

    end 

end 

%% 

SFeat=size(Feature); 

SFeat_rows=SFeat(1,1); 

SFeat_columns=SFeat(1,2); 

  

%% 

xyz=zeros(19,L_nm); 

  

   for gg2=1:SFeat_columns 

         

       for gg3=1:SFeat_rows 

           

          for gg=1:19 

               

           if(Feature(gg3,gg2)==gg) 

                

               xyz(gg,gg2)=Repeat_Count(gg3,gg2); 

                 

           else 

                     

           end 

           

          end 

         

   end 

end 

%% 

close all 

XYZ(:,ppp)=xyz; % Use only when code is running for one number of measurement,e.g., nm=[80]... 

                % ... if vector is used nm=[20:20:1000], Comment line: XYZ(:,ppp)=xyz; 

  

% figure,plot(nm,xyz(:,1:L_nm))    

  

%% 

  

end 

toc 

  
-------------------------------------------------------------- 

 

 

 

 



 
 

 
clc; clear all; close all; 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%% FFT - Matrix Generation  %%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%% SIEMENS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load('C:\Users\PFST-User\Desktop\PhD DATA\S_H_IM1_M1000.mat')  

load('C:\Users\PFST-User\Desktop\PhD DATA\S_H_IM2_M1000.mat') 

load('C:\Users\PFST-User\Desktop\PhD DATA\S_BRB1_IM2_M1000.mat') 

  

%% KONCAR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% load('C:\Users\PFST-User\Desktop\PhD DATA\K_H_IM1_M1000.mat')  

% load('C:\Users\PFST-User\Desktop\PhD DATA\K_H_IM2_M1000.mat') 

% load('C:\Users\PFST-User\Desktop\PhD DATA\K_BRB1_IM2_M1000.mat') 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load('C:\Users\PFST-User\Desktop\PhD DATA\time_vector.mat') 

t=t_H; 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%% FFT - HEALTHY - IM1 %%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% LtH=length(t);                                   

% FsH=1./(t(5001)-t(5000));               

% TH=1./FsH;                                         

% f_H = FsH*(0:(LtH/2))/LtH;                

% LfH=length(f_H);  

% FFT_H=zeros(LtH,1);     

%      

% for i=1:1000 

%     

%     FFT_S1(:,i)=fft(S1_H_IM1_M1000(:,i)); 

%     P2_FFT_S1(:,i) = abs(FFT_S1(:,i)./LtH); 

%     P1_FFT_S1(:,i) = P2_FFT_S1(1:LtH./2+1,i); 

%     P1_FFT_S1(2:end-1,i) = 2*P1_FFT_S1(2:end-1,i); 

%      

%     FFT_IM1_S1(:,i)=P1_FFT_S1(:,i); 

%      

%     FFT_S2(:,i)=fft(S2_H_IM1_M1000(:,i)); 

%     P2_FFT_S2(:,i) = abs(FFT_S2(:,i)./LtH); 

%     P1_FFT_S2(:,i) = P2_FFT_S2(1:LtH./2+1,i); 

%     P1_FFT_S2(2:end-1,i) = 2*P1_FFT_S2(2:end-1,i); 

%      

%     FFT_IM1_S2(:,i)=P1_FFT_S2(:,i); 

%      

%     FFT_S3(:,i)=fft(S3_H_IM1_M1000(:,i)); 

%     P2_FFT_S3(:,i) = abs(FFT_S3(:,i)./LtH); 

%     P1_FFT_S3(:,i) = P2_FFT_S3(1:LtH./2+1,i); 

%     P1_FFT_S3(2:end-1,i) = 2*P1_FFT_S3(2:end-1,i); 

%      

%     FFT_IM1_S3(:,i)=P1_FFT_S3(:,i); 

%     

% end 

  

% save('C:\Users\PFST-User\Desktop\PhD DATA/S_FFT_H_IM1_M1000.mat',... 

% 'FFT_IM1_S1',... 

% 'FFT_IM1_S2',... 

% 'FFT_IM1_S3'); 

  

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%% FFT - HEALTHY - IM2_H %%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

% LtH=length(t);                                   

% FsH=1./(t(5001)-t(5000));               

% TH=1./FsH;                                         

% f_H = FsH*(0:(LtH/2))/LtH;                

% LfH=length(f_H);  

% FFT_H=zeros(LtH,1);     

%      

% for i=1:1000 

%     

%     FFT_S1(:,i)=fft(S1_H_IM2_M1000(:,i)); 

%     P2_FFT_S1(:,i) = abs(FFT_S1(:,i)./LtH); 

%     P1_FFT_S1(:,i) = P2_FFT_S1(1:LtH./2+1,i); 

%     P1_FFT_S1(2:end-1,i) = 2*P1_FFT_S1(2:end-1,i); 

%      

%     FFT_IM2_H_S1(:,i)=P1_FFT_S1(:,i); 

%      

%     FFT_S2(:,i)=fft(S2_H_IM2_M1000(:,i)); 



 
 

%     P2_FFT_S2(:,i) = abs(FFT_S2(:,i)./LtH); 

%     P1_FFT_S2(:,i) = P2_FFT_S2(1:LtH./2+1,i); 

%     P1_FFT_S2(2:end-1,i) = 2*P1_FFT_S2(2:end-1,i); 

%      

%     FFT_IM2_H_S2(:,i)=P1_FFT_S2(:,i); 

%      

%     FFT_S3(:,i)=fft(S3_H_IM2_M1000(:,i)); 

%     P2_FFT_S3(:,i) = abs(FFT_S3(:,i)./LtH); 

%     P1_FFT_S3(:,i) = P2_FFT_S3(1:LtH./2+1,i); 

%     P1_FFT_S3(2:end-1,i) = 2*P1_FFT_S3(2:end-1,i); 

%      

%     FFT_IM2_H_S3(:,i)=P1_FFT_S3(:,i); 

%     

% end 

%  

%  

% save('C:\Users\PFST-User\Desktop\PhD DATA/S_FFT_H_IM2_M1000.mat',... 

% 'FFT_IM2_H_S1',... 

% 'FFT_IM2_H_S2',... 

% 'FFT_IM2_H_S3'); 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%% FFT - BRB1 - IM2_BRB1 %%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

LtB=length(t);                                   

FsB=1./(t(5001)-t(5000));               

TB=1./FsB;                                         

f_B = FsB*(0:(LtB/2))/LtB;                

LfB=length(f_B);  

FFT_B=zeros(LtB,1);     

  

for i=1:1000 

    

    FFT_S1(:,i)=fft(S1_BRB1_IM2_M1000(:,i)); 

    P2_FFT_S1(:,i) = abs(FFT_S1(:,i)./LtB); 

    P1_FFT_S1(:,i) = P2_FFT_S1(1:LtB./2+1,i); 

    P1_FFT_S1(2:end-1,i) = 2*P1_FFT_S1(2:end-1,i); 

     

    FFT_IM2_BRB1_S1(:,i)=P1_FFT_S1(:,i); 

     

    FFT_S2(:,i)=fft(S2_BRB1_IM2_M1000(:,i)); 

    P2_FFT_S2(:,i) = abs(FFT_S2(:,i)./LtB); 

    P1_FFT_S2(:,i) = P2_FFT_S2(1:LtB./2+1,i); 

    P1_FFT_S2(2:end-1,i) = 2*P1_FFT_S2(2:end-1,i); 

     

    FFT_IM2_BRB1_S2(:,i)=P1_FFT_S2(:,i); 

     

    FFT_S3(:,i)=fft(S3_BRB1_IM2_M1000(:,i)); 

    P2_FFT_S3(:,i) = abs(FFT_S3(:,i)./LtB); 

    P1_FFT_S3(:,i) = P2_FFT_S3(1:LtB./2+1,i); 

    P1_FFT_S3(2:end-1,i) = 2*P1_FFT_S3(2:end-1,i); 

     

    FFT_IM2_BRB1_S3(:,i)=P1_FFT_S3(:,i); 

    

end 

  

  

  

% save('C:\Users\PFST-User\Desktop\PhD DATA/S_FFT_BRB1_IM2_M1000.mat',... 

% 'FFT_IM2_BRB1_S1',... 

% 'FFT_IM2_BRB1_S2',... 

% 'FFT_IM2_BRB1_S3'); 

 

  
-------------------------------------------------------------- 

 
tic 

clc;clear all;close all 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%% FFT SIEMENS Analysis  %%%%%%%%%%%%%%%%%%%%%%%% 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load('C:\Users\PFST-User\Desktop\PhD DATA/S_FFT_H_IM1_M1000.mat'); 

load('C:\Users\PFST-User\Desktop\PhD DATA/S_FFT_H_IM2_M1000.mat'); 

load('C:\Users\PFST-User\Desktop\PhD DATA/S_FFT_BRB1_IM2_M1000.mat'); 

  

FFT_IM1=FFT_IM1_S1+FFT_IM1_S2+FFT_IM1_S3; 

FFT_IM2_H=FFT_IM2_H_S1+FFT_IM2_H_S2+FFT_IM2_H_S3; 

FFT_IM2_BRB1=FFT_IM2_BRB1_S1+FFT_IM2_BRB1_S2+FFT_IM2_BRB1_S3; 

  

  



 
 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load('C:\Users\PFST-User\Desktop\KONCAR/frequency_vector.mat'); % ff - frequency vector 1x50004 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% f1=1.8; 

% f2=2.8; 

%% 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% f1=7; 

% f2=8; 

%% 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% f1=20; 

% f2=23; 

%% 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% f1=40; 

% f2=41; 

%% 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% f1=44.6; 

% f2=46; 

%% 6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% f1=54; 

% f2=56; 

%% 7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% f1=58; 

% f2=60; 

%% 8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% f1=68; 

% f2=71; 

%% 9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% f1=82; 

% f2=85; 

%% 10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% f1=91; 

% f2=95; 

%% 11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

f1=96; 

f2=98; 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

indx1= find(abs(ff-f1) < 0.001); 

indx2= find(abs(ff-f2) < 0.001); 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

NoM=2; % NoM - Number of measurements 

NoI=30; % NoI - Number of iterations 

for jj=1:NoI 

  

clear IM1 IM2_H IM2_BRB1 IM1_mean IM2_H_mean IM2_BRB1_mean IM1_std IM2_H_std IM2_BRB1_std   

clear IM1_indx IM2_H_indx IM2_BRB1_indx IM1_max IM2_H_max IM2_BRB1_max 

  

for i=1:100 

     

FFT_IM1=FFT_IM1(:, randperm(size(FFT_IM1, 2))); 

FFT_IM2_H=FFT_IM2_H(:, randperm(size(FFT_IM2_H, 2))); 

FFT_IM2_BRB1=FFT_IM2_BRB1(:, randperm(size(FFT_IM2_BRB1, 2))); 

  

  

  

IM1=FFT_IM1(:,1:NoM); 

IM2_H=FFT_IM2_H(:,1:NoM); 

IM2_BRB1=FFT_IM2_BRB1(:,1:NoM); 

  

  

IM1_mean=mean(IM1,2); 

IM2_H_mean=mean(IM2_H,2); 

IM2_BRB1_mean=mean(IM2_BRB1,2); 

  

IM1_std=std(IM1,0,2); 

IM2_H_std=std(IM2_H,0,2); 

IM2_BRB1_std=std(IM2_BRB1,0,2); 

  

  

IM1_indx=IM1_mean(indx1:indx2,:); 

IM2_H_indx=IM2_H_mean(indx1:indx2,:); 

IM2_BRB1_indx=IM2_BRB1_mean(indx1:indx2,:); 

  

IM1_max(i)=max(IM1_indx); 

IM2_H_max(i)=max(IM2_H_indx); 

IM2_BRB1_max(i)=max(IM2_BRB1_indx); 

  

end 

%% 

figure, plot(IM1_max,'b');hold on;plot(IM2_H_max,'k');plot(IM2_BRB1_max,'r') 

%%  

count=0; 

for j=1:1:100 

    



 
 

        if (IM2_BRB1_max(j)>IM1_max(j) & IM2_BRB1_max(j)>IM2_H_max(j)) 

         

        count=count+1; 

    else 

    end 

     

     

     

end 

  

 CC(jj)=count; 

  

end 

  

toc 

  
-------------------------------------------------------------- 

 
tic 

clc;clear all;close all 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load('C:\Users\PFST-User\Desktop\PhD DATA/K_FFT_H_IM1_M1000.mat'); 

load('C:\Users\PFST-User\Desktop\PhD DATA/K_FFT_H_IM2_M1000.mat'); 

load('C:\Users\PFST-User\Desktop\PhD DATA/K_FFT_BRB1_IM2_M1000.mat'); 

  

FFT_IM1=FFT_IM1_S1+FFT_IM1_S2+FFT_IM1_S3; 

FFT_IM2_H=FFT_IM2_H_S1+FFT_IM2_H_S2+FFT_IM2_H_S3; 

FFT_IM2_BRB1=FFT_IM2_BRB1_S1+FFT_IM2_BRB1_S2+FFT_IM2_BRB1_S3; 

  

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load('C:\Users\PFST-User\Desktop\KONCAR/frequency_vector.mat'); % ff - frequency vector 1x50004 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% f1=3; 

% f2=4; 

%% 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% f1=9; 

% f2=11; 

%% 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% f1=35; 

% f2=38; 

%% 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

f1=56; 

f2=58; 

%% 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% f1=62; 

% f2=65; 

%% 6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% f1=78; 

% f2=80; 

%% 7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% f1=88; 

% f2=90.6; 

%% 8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% f1=96; 

% f2=97; 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

indx1= find(abs(ff-f1) < 0.001); 

indx2= find(abs(ff-f2) < 0.001); 

  

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

NoM=2; % NoM - Number of measurements 

NoI=30; % NoI - Number of iterations 

for jj=1:NoI 

  

clear IM1 IM2_H IM2_BRB1 IM1_mean IM2_H_mean IM2_BRB1_mean IM1_std IM2_H_std IM2_BRB1_std   

clear IM1_indx IM2_H_indx IM2_BRB1_indx IM1_max IM2_H_max IM2_BRB1_max 

  

for i=1:100 

     

FFT_IM1=FFT_IM1(:, randperm(size(FFT_IM1, 2))); 

FFT_IM2_H=FFT_IM2_H(:, randperm(size(FFT_IM2_H, 2))); 

FFT_IM2_BRB1=FFT_IM2_BRB1(:, randperm(size(FFT_IM2_BRB1, 2))); 

  

  

  

IM1=FFT_IM1(:,1:NoM); 

IM2_H=FFT_IM2_H(:,1:NoM); 

IM2_BRB1=FFT_IM2_BRB1(:,1:NoM); 

  



 
 

  

IM1_mean=mean(IM1,2); 

IM2_H_mean=mean(IM2_H,2); 

IM2_BRB1_mean=mean(IM2_BRB1,2); 

  

IM1_std=std(IM1,0,2); 

IM2_H_std=std(IM2_H,0,2); 

IM2_BRB1_std=std(IM2_BRB1,0,2); 

  

  

IM1_indx=IM1_mean(indx1:indx2,:); 

IM2_H_indx=IM2_H_mean(indx1:indx2,:); 

IM2_BRB1_indx=IM2_BRB1_mean(indx1:indx2,:); 

  

IM1_max(i)=max(IM1_indx); 

IM2_H_max(i)=max(IM2_H_indx); 

IM2_BRB1_max(i)=max(IM2_BRB1_indx); 

  

end 

%% 

figure, plot(IM1_max,'b');hold on;plot(IM2_H_max,'k');plot(IM2_BRB1_max,'r') 

%%  

count=0; 

for j=1:1:100 

    

        if (IM2_BRB1_max(j)>IM1_max(j) & IM2_BRB1_max(j)>IM2_H_max(j)) 

         

        count=count+1; 

    else 

    end 

     

     

     

end 

  

 CC(jj)=count; 

  

end 

  

toc 

  
 

 

 

 

 


