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Abstract 

Air pollution from maritime transport presents a growing environmental and public health challenge, 

particularly in densely populated port cities. Despite the shipping industry's critical role in global trade, 

ship-sourced emissions, especially during port operations, are often underestimated in both regulatory 

frameworks and emission reduction strategies. Ports, as multimodal hubs of economic activity, 

experience high concentrations of pollutants such as nitrogen oxides (NOₓ), sulphur oxides (SOₓ), 

particulate matter (PM), and greenhouse gases (GHGs), which are released during key operational 

phases including cruising, manoeuvring, and hoteling. The lack of high-resolution, operationally 

grounded, and scalable methods for quantifying and managing these emissions has hindered both policy 

formulation and effective mitigation at the local level. 

This research is motivated by the increasing need for intelligent, data-driven tools that align with the 

development of smart ports and the wider adoption of Internet of Things (IoT)-based technologies. The 

concept integrates real-time data flows, vessel tracking systems, and machine learning analytics into a 

structured and flexible system that can support emission management and strategic decision-making in 

seaports. In response to this need, the Port-related Emissions Prediction, Analytics and Risk Evaluation 

(PrE-PARE) Decision Support System (DSS) was developed. The system enables the quantification, 

prediction, evaluation, and optimisation of ship-based emissions by integrating extensive technical and 

operational datasets within a modular framework. 

The PrE-PARE DSS comprises four interlinked modules. The Module 1 focuses on emissions estimation 

through a bottom-up, trajectory-based approach, utilising Automatic Identification System (AIS) data 

and vessel technical specifications to produce high-resolution inventories across all operating modes. 

The Module 2 incorporates a supervised machine learning model Multivariate Adaptive Regression 

Splines (MARS) to forecast emissions and identify key emission-influencing variables, with strong 

predictive accuracy even for previously unseen vessels. The Module 3 introduces a set of novel metrics 

and classification methods, including VAPOR (emission efficiency metric), SHAPE (scaling against a 

standardised baseline), SEIL (voyage-level ranking), PERIL (temporal risk classification), and 

SEPI/EOP (performance and optimisation potential). These tools enable standardised evaluation and 

ranking of ships based on emission efficiency and impact. The Module 4 - final module, dedicated to 

optimisation, applies rule-based logic and performance metrics to recommend targeted corrective 

measures based on available operational levers such as time at berth or engine load. 

The system was applied to the Port of Split as a case study, where it demonstrated the ability to deliver 

actionable insights under real-world operational constraints. Across various modules, it produced 

meaningful outputs including a complete annual emission inventory, daily emissions forecasting, risk 

classification of high-emission periods, and optimisation scenarios that demonstrated a potential 

reduction of up to 55% on a critical day based on historical data. The research not only bridges the 

methodological gap between academic inventory models and applied port management but also supports 

long-term regulatory planning, emissions based tariffs, and data-sharing frameworks between maritime 

stakeholders. 

In summary, the PrE-PARE DSS offers a flexible, scalable, and analytically robust solution for the 

management of ship-based air pollution in port areas. Its integration of machine learning, novel metric 

systems, and IoT-compatible datasets positions it as a significant contributor to the evolution toward 

smart and sustainable port operations. 
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Terminology 

Annual Efficiency Ratio The AER indicates how much carbon dioxide a vessel emits for each 

tonne of cargo carried per nautical mile sailed over the course of a 

year – g CO₂ / deadweight tonne NM. 

Boosting Multivariate 

Adaptive Regression Splines 

An ensemble learning technique that improves model accuracy by 

sequentially combining multiple weak models (in this case, MARS 

models). 

Bottom-up The bottom-up approach in ship emissions quantification refers to a 

method that starts from the individual vessel level, calculating 

emissions based on detailed ship-specific operational data. This 

includes operational (activity) data and technical specifications, fuel 

type used, and specific emission factors for each pollutant. The 

emissions for each ship are calculated for every operational phase 

(cruising, manoeuvring, hoteling), and then aggregated to obtain 

detailed emissions for the port, region, or timeframe of interest. 

Carbon Intensity Indicator CII is a mandatory measure for assessing and monitoring the energy 

efficiency and carbon emissions of ships during operation. It 

calculates the amount of CO₂ emitted per unit of transport work over 

a year – g CO₂ / deadweight tonne NM. 

Coefficient of Determination 

Validation 

R² validation refers to the statistical measure used to evaluate how 

well a predictive model explains the variance of the observed 

outcomes during model validation. It quantifies the proportion of 

variability in the dependent variable that can be explained by the 

independent variables in the model. R² = 1 means perfect prediction. 

Cruising mode Cruising mode refers to the phase of a ship's voyage when it sails at 

a steady speed and power output. In this research, cruising mode is 

defined as the period when the ship’s main engines operate at LF 

exceeding 20%, while the auxiliary engines provide energy for 

onboard services at a constant LF. 

Emission factor EF depends on both static data about engine function, engine type 

and fuel type and dynamic information about the characteristics of 

the ship’s activities. Expresses the mass of pollutant released per unit 

of fuel burned or engine output – g of pollutant / g fuel or g of 

pollutant / kWh 

Emission Optimisation 

Potential 

EOP is a performance indicator introduced in this research that 

quantifies the extent to which a ship’s emissions can be reduced 

compared to its own historical baseline. It reflects the difference 

between the ship’s actual emission intensity during a specific voyage 

and its previously recorded average performance. 

Energy Efficiency Existing 

Ship Index 

EEXI is a technical efficiency standard for addressing the energy 

efficiency of existing ships – g CO₂ / deadweight tonne NM. 

Energy Efficiency 

Operational Indicator 

EEOI is a performance metric for assessing the actual operational 

energy efficiency of ships by considering fuel consumption, distance 
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sailed, and actual cargo carried – g CO₂ / cargo carried × distance 

travelled. 

Energy Output EO refers to the total amount of energy delivered by a ship’s 

propulsion and auxiliary systems over a defined period of operation. 

It represents the useful mechanical or electrical energy generated to 

perform work during a voyage or a particular operational mode (e.g. 

cruising, manoeuvring, or hoteling). 

Energy-Based The energy-based method is a calculation approach that estimates 

ship emissions by combining the amount of energy output by ship 

engines to corresponding emission factors and time in each operating 

mode.  

Fuel-Based The fuel-based method is a calculation approach that estimates ship 

emissions by multiplying the amount of fuel consumed with 

pollutant-specific emission factors. It assumes a direct link between 

fuel quantity burned and the amount of pollutants emitted, without 

detailed consideration of engine load or operational modes. 

Generalised Cross 

Validation 

GCV is a statistical method used to estimate the predictive 

performance of a model while controlling for overfitting. 

Hoteling mode Hotelling mode refers to the phase when a ship is stationary at 

anchorage or berth while loading, unloading, or waiting, with ME 

turned off. In this research, only auxiliary engines operate to supply 

energy for onboard services, hotel load, and cargo operations, 

running at constant LF. 

Load Factor LF is a dimensionless parameter used to express the ratio between 

the actual energy output of an engine and its maximum rated energy 

output (MCR). It indicates the proportion of engine capacity being 

utilised at any given moment. In emissions estimation, LF helps 

determine how much energy the engine produces under different 

operating modes (e.g., cruising, manoeuvring, hoteling), which 

directly influences EF and emission levels. 

Manoeuvring mode Manoeuvring mode refers to the phase when a ship is navigating at 

low speeds near ports, during docking, undocking, or pilotage. In 

this research, manoeuvring mode means that the main engines 

operate at LF below 20%, while auxiliary engines provide energy for 

onboard services at a constant LF. 

Multivariate Adaptive 

Regression Splines 

MARS is a flexible, non-parametric regression method used in 

machine learning and statistics to model complex, non-linear 

relationships between variables. It automatically detects interactions 

and non-linearities in the data without requiring a predefined 

functional form. 

Operating mode/Activity 
Operating mode, or activity, refers to the specific phase of a ship's 

voyage that directly affects engine usage and emissions. Typical 

modes include cruising, manoeuvring, and hoteling. Each operating 

mode is characterised by different power demands on ship engines, 

which are expressed through the LF. 

Operational Efficiency OE, as defined in this research, is the ability of a ship to complete a 
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voyage on schedule with minimal energy consumption per unit of 

time. OE is used for evaluating ship emission efficiency within 

metrics developed in this thesis like VAPOR, SHAPE, and SEPI, 

where both technical design and real operational behaviour are 

assessed to understand and improve air pollution performance in 

ports. 

Port Emissions Risk Level PERIL is a classification algorithm developed in this research to 

assess and categorise the overall air pollution risk in port areas based 

on daily ship-sourced emissions. Daily total emissions are 

segmented into five classes (e.g., Very Low, Low, Moderate, High, 

and Very High), depending on how far they deviate from the average 

daily emissions. 

Preferred Reporting Items 

for Systematic Reviews and 

Meta-Analyses 

PRISMA is a widely used evidence-based reporting guideline 

designed to improve the transparency, clarity, and completeness of 

systematic reviews and meta-analyses. It provides a standardised 

checklist and flow diagram to ensure that all key aspects of the 

review process, including study selection, data extraction, and 

synthesis, are fully documented and reproducible. 

Propeller Law Propeller Law describes the relationship between a ship’s speed and 

the power required by its main engines, stating that power demand 

increases approximately with the cube of the vessel’s speed. This 

principle is applied exclusively to propulsion systems, as it reflects 

how propeller-driven thrust relates to vessel movement, revealing LF 

at specific time. 

Root Mean Square Error RMSE is a statistical metric to evaluate the accuracy of predictive 

models. It measures the average magnitude of the errors between 

predicted and actual values, with larger errors having a greater 

influence due to squaring. Lower RMSE indicates better predictive 

performance. 

SHAPE SHAPE is a standardised metric introduced in this research to 

evaluate and compare the emission efficiency of ships by scaling 

their actual emissions against a baseline reference for similar ship 

types and operational modes. It compares VAPOR-c (calculated 

hourly emissions per unit of work capacity) to VAPOR-b (baseline 

average hourly emissions for the same ship type and mode). 

Ship Emission Intensity S-EI is a metric introduced in this research that quantifies the total 

amount of emissions produced by a ship during an entire voyage 

relative to the work capacity of that vessel. It allows for assessing the 

overall emission output for a complete port visit or operational cycle, 

while accounting for the specific capabilities of the ship. 

Ship Emissions Impact Level SEIL is a simplified and intuitive metric introduced in this research 

to evaluate and compare the emissions impact of individual ships 

during their port visits. It enables clear visualisation and ranking of 

ships based on their total emissions per port call. 

Ship Emissions Performance 

Indicator 

SEPI is an advanced performance indicator introduced in this 

research to assess and rank the overall emissions performance of 
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individual ships, with a goal of optimisation. It integrates both 

efficiency and optimisation potential into a single, balanced metric. 

Ship Type Emission 

Intensity 

ST-EI is a normalised metric introduced in this research that 

quantifies and compares the average emission output per voyage of a 

specific ship type relative to the entire fleet's average in a given 

timeframe. It is used to assess how much a particular group of ships 

contributes to total port emissions, considering both the number of 

voyages and total emissions. 

Top-Down in the context of ship emissions refers to a method where the total 

volume of exhaust gases is first calculated on wide level (reginal, 

national or port), rather than starting from individual vessel data. The 

method uses available statistics (traffic, fuel sales) relevant to area, 

and corresponding EF, often giving generalised results. 

VAPOR (a/b) VAPOR is a central emission metric introduced in this research that 

measures the emission efficiency by comparing the average hourly 

rate of exhaust gas production relative to a ship’s work capacity in 

each operational mode. By incorporating available operational data it 

enables the standardised efficiency evaluation and comparison. 

Voyage In the context of this research, a voyage includes arrival, stay, and 

departure, encompassing cruising, manoeuvring, and hoteling as 

three operational modes, ensuring a comprehensive assessment of 

the vessel’s operational profile. 
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CHAPTER 1 

1. Introduction 

Although maritime shipping is considered as the most environmentally efficient mode of transportation, 

primarily due to its capacity to transfer massive volumes of cargo in a single voyage, it is also heavily 

dependent on marine fuels [1–3]. A variety of harmful substances are released as a by-product of the 

combustion process in the propulsion and auxiliary systems of ships. These include both greenhouse gases 

(GHGs), such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), and air pollutant 

substances (APSs) like sulphur oxides (SOₓ), nitrogen oxides (NOₓ), particulate matter (PM), carbon 

monoxide (CO), and non-methane / volatile organic compounds (NM / VOCs) [4–6]. 

As maritime transport accounts for approximately 70 % to 80 % of global trade by volume, its contribution 

to anthropogenic CO₂ emissions is considerable, representing around 3 % of total global emissions [3,7–

9]. While GHGs are known for their contribution to global warming, the other pollutants generated during 

fuel combustion are particularly concerning for their direct and localised health impacts, especially in 

coastal urban areas and port cities [2,6,10]. Inhalation of fine PM₂.₅, SOₓ, NOₓ, CO, and VOCs has been 

linked to severe health effects including respiratory illnesses, cardiovascular conditions, and increased risk 

of premature death [10–12].  

The consequences of exposure, both short-term and long-term, are especially acute with pollutants like 

PM, ozone (O₃), CO, NOₓ, and SOₓ [12,13]. In this context, port cities are particularly vulnerable, as 

shipping emissions occur near populated areas. The environmental burden is often most intense in coastal 

regions and seaports, where marine traffic is dense [6,14]. Within the European context, this issue is 

amplified by the fact that nearly 90% of ports are spatially integrated with cities, significantly increasing 

the exposure of residents to degraded air quality [14]. 

These facts make it clear that addressing air pollution from ships requires not only international 

coordination but also sound local and regional air pollution control strategies focused on the urban port 

environment. Although a number of global and regional regulatory measures are already active, and air 

pollution in seaports is increasingly monitored by conducting exhaust gas inventories, there are still large 

gaps in terms of standardised approach to ship efficiency and emission control.  

1.1. Global Context and Regulatory Background of Ship 

Emissions 

To address growing concerns about emissions from the shipping sector, the International Maritime 

Organisation (IMO) introduced Annex VI to the International Convention for the Prevention of Pollution 

from Ships (MARPOL) in 1997, focusing on the Prevention of Air Pollution from Ships [15]. This 

regulatory framework targets both APSs and GHGs, and its development over time has resulted in a set of 

technical and operational measures aimed at reducing the environmental footprint of global maritime 

transport on atmosphere [16]. In this context, the Initial Strategy on the reduction of GHG has most recently 

been revised, adopting a significantly more ambitious target aimed at achieving full decarbonisation of 

ships by or around 2050 [17,18]. 

1.1.1. Technical Measures 

The first major technical control introduced under Annex VI was the Global Sulphur Cap, which took 

effect globally in January 2020. This regulation limits the sulphur content in marine fuels to 0.50% mass 
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by mass percent (% m/m), while designated Emission Control Areas (ECAs) enforce an even stricter limit 

of 0.10% m/m [19]. This measure targets SOₓ emissions, a primary contributor to acid rain and respiratory 

illness. 

In parallel, the IMO established NOₓ emission limits through a three-tiered approach. Tier I, applicable to 

ships built between 2000 and 2010, set the initial standard [20]. Tier II, for ships constructed from 2011 

onwards, required approximately a 20% reduction in NOₓ compared to Tier I levels [20]. In the European 

context, Tier III requirements have applied since 1 January 2021 for ships operating in newly designated 

NECA zones, including the North Sea and the Baltic Sea. Compliance with Tier III often requires the use 

of advanced emission control technologies such as Selective Catalytic Reduction systems or Exhaust Gas 

Recirculation. 

In 2013, the IMO introduced the Energy Efficiency Design Index (EEDI), a performance-based regulation 

requiring new ships of 400 gross tonnage (GT) or more to meet minimum design efficiency standards 

[4,21]. The EEDI is calculated based on parameters such as engine power, fuel consumption, and ship 

capacity. The first implementation phase mandated a 10% reduction in CO₂ emissions per tonne-mile 

compared to a baseline derived from ships built between 2000 and 2010 [22]. This requirement becomes 

progressively stricter in subsequent phases introduced every 5 years.[4,21,22] 

In 2023, the IMO extended technical regulations to cover existing vessels through the Energy Efficiency 

Existing Ship Index (EEXI) [4,23]. Like the EEDI, the EEXI uses design characteristics to calculate energy 

efficiency, but it applies to ships already in service. Ships of 400 GT and above must demonstrate 

compliance with required efficiency thresholds, which vary by ship type and size class [24]. The EEXI 

framework is aligned with EEDI principles but uses limited operational data and focuses on design 

modifications or technical adjustments such as engine power limitation or propulsion upgrades to meet 

compliance targets [21]. 

1.1.2. Operational Measures 

Operational measures were introduced alongside technical requirements to address emissions during active 

use. The Ship Energy Efficiency Management Plan (SEEMP) was first implemented in 2013 [4,25]. It 

obliges ship operators to establish structured plans for improving fuel efficiency through measures such as 

hull and propeller maintenance, speed optimisation, weather routing, and energy management [4,25,26]. 

The updated SEEMP framework includes three parts: an efficiency improvement plan, fuel consumption 

monitoring, and a methodology for assessing carbon intensity [26]. 

In 2018, the IMO launched the Data Collection System (DCS), requiring ships of 5,000 GT and above to 

report annual fuel oil consumption [27]. This reporting system supports performance assessment and 

informs regulatory development. 

Beginning in 2024, ships of 5,000 GT and above must also comply with the Carbon Intensity Indicator 

(CII) regulation [23,28]. The CII is a metric that evaluates the operational energy efficiency of a vessel by 

calculating the mass of CO₂ emitted per transport work (e.g., grams of CO₂ per deadweight-tonne nautical 

mile). Each ship receives an annual rating from A (best) to E (worst) [25,29]. Ships falling into categories 

D or E for 3 consecutive years may be subject to corrective action plans under SEEMP [29]. 

For CII assessment, emissions are calculated using the fuel-based method [30]. Fuel consumption is 

multiplied by its carbon content, while transport work is derived from operational data. To standardise 

performance measurement, the IMO has endorsed various efficiency indicators such as the Annual 

Efficiency Ratio (AER), cargo gross distance (cgDIST), and Energy Efficiency Operational Indicator 

(EEOI) [9,25,30]. The AER assesses carbon intensity by dividing the total CO₂ emissions by the total 

distance travelled and the carrying capacity of the ship over the course of a year, thus providing an annual 

overview of operational efficiency. Similarly, the cgDIST shows the amount of carbon emissions released 

by comparing the distance travelled when transporting cargo. In the EEOI, the fuel consumption and 
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carbon factor for each fuel type, together with the amount of cargo transported on each voyage and the 

distance travelled with the transported freight, are used to indicate the energy efficiency of ship. 

1.2. Regional Context and Monitoring Background of Ship 

Emissions in Ports 

1.2.1. European Union Operational and Monitoring Measures  

While global maritime emissions remain a significant concern, increasing attention is being directed to the 

regional and local domains, where environmental and public health effects are more immediate and 

measurable. Although air pollution from port activities represents a relatively small fraction of global 

shipping emissions, their impact at the local level is disproportionally significant, due to both the high 

frequency of ship movements and the close proximity of ports to residential areas [31–33]. Reflecting 

broader awareness of these regional issues, the European Sea Ports Organisation (ESPO) has identified air 

quality, climate change, and energy efficiency as core environmental priorities within the European Union 

(EU) port sector [14]. 

To address these gaps, the EU has introduced several additional regulatory instruments that target maritime 

emissions more specifically. One of the most notable is the Sulphur Directive (Directive (EU) 2016/802), 

which limits the maximum sulphur content in marine fuels used by ships operating in EU waters [34]. 

Since 2020, this limit has been set at 0.50% in general, consistent with the IMO’s global cap, and 0.10% 

in designated Sulphur Emission Control Areas (SECAs) [35]. The directive applies not only to vessels at 

sea but also to those at berth, requiring the use of cleaner fuels or equivalent abatement technologies while 

moored in EU ports. 

Complementing this directive is the EU Monitoring, Reporting and Verification (MRV) Regulation 

(Regulation (EU) 2015/757) [36]. It obliges ships of 5,000 GT and above to report verified annual data on 

CO₂ emissions, fuel consumption, and cargo activity on voyages to, from, and between EU ports. Unlike 

the IMO’s DCS, which is non-public and global in scope, MRV data are accessible to the public and 

tailored to support regional climate policy, including integration with the EU Emissions Trading System 

from 2024 onwards [37]. 

In terms of wider emissions controlling within the EU, all member states are required to submit national 

GHG inventories to the European Environment Agency (EEA), following Intergovernmental Panel on 

Climate Change (IPCC) guidelines [38–40]. However, these inventories are primarily focused on GHGs 

and do not systematically mandate detailed reporting of emissions from maritime transport, particularly in 

port areas, where the concentration of pollutants poses a heightened risk to local communities. 

Therefore, despite the mentioned monitoring mechanism and the supplementary directives, data 

concerning emissions from ships operating in and around ports remains inconsistently collected or reported 

across member states. For example, Croatia’s national GHG inventory relies on the Tier 1 methodology 

based on overall fuel consumption without any spatial or temporal breakdown [41]. This is especially 

concerning given Croatia’s 1,777 km Adriatic coastline and six international ports, which recorded over 

359,000 vessel arrivals in 2019 [41–43]. Without high-resolution data that captures the complexity of port 

traffic and its environmental implications, the design of effective mitigation strategies remains limited.  

1.2.2. Concept of Emission Inventories as Monitoring Tools for Ship-Sourced 

Air Pollution in Ports 

Given the practical necessity of better understanding air pollution associated with maritime activities, both 

port authorities and academic researchers acknowledge the importance of compiling dedicated shipping 

emission inventories for seaports. These inventories are typically based on either a top-down or bottom-
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up approach, used in combination with fuel- or energy-based estimation methods, to calculate the volume 

of emissions produced over a defined time period. 

In the top-down method, emissions are commonly estimated using a fuel-based technique. This involves 

utilising fuel sales statistics to determine the total fuel consumption (FC) of the fleet within a defined 

geographic area during a specific time frame. The FC data are then multiplied by an emission factor (EF), 

which represents the mass of pollutant emitted per tonne of fuel consumed. The resulting value gives the 

total quantity of emissions (E), as shown in the following equation [44]: 
 

 E = FC × EF (1) 

This fuel-based approach is advantageous in that it requires minimal data inputs. Generalised data 

describing average fleet activity, fuel usage, and emission characteristics can be sufficient, making the 

method suitable when detailed traffic information is unavailable [44]. However, this simplicity comes with 

drawbacks. The generalisation of data introduces uncertainty, and the EFs are usually broad estimates that 

fail to reflect specific operating conditions or temporal variations in emission intensity [45]. Furthermore, 

discrepancies have been observed between bunker fuel sales and the actual FC of global fleets, which 

undermines the method’s accuracy when assessing emissions from specific maritime activities [45,46]. 

This issue becomes especially pronounced in smaller-scale contexts such as individual ports, where 

aggregated fuel statistics provide limited resolution. For this reason, top-down approaches are more 

commonly used in regional or local emission inventories where data precision is secondary to broader 

coverage. 

In contrast, the bottom-up approach is preferred when detailed vessel-specific movement data and 

technical specifications are accessible. This technique, which is activity-based and data-intensive, can 

generate high-resolution emission estimates for individual vessels, capturing emissions over time and 

space with significant accuracy [44,45]. Within this framework, emissions from each activity type, such 

as hoteling, manoeuvring, or cruising, are calculated using combinations of engine energy output (EO), 

FC, EF, and operational time (T) [47,48]. To compute the total emissions for a given region or time span, 

these individual estimates are aggregated for all voyages [44]. 

Both energy-based and fuel-based variants of the bottom-up method exist. Equations (2) and (3) describe 

the energy-based model, while Equation (4) illustrates the fuel-based calculation [44,48]: 
 

 E = EO × EF × T (2) 

 EO = P × LF (3) 

 E = FC × LF × EF × T (4) 

 In these expressions, EO is derived from the rated engine power (P) multiplied by the load factor (LF), 

which represents the proportion of maximum engine capacity being used. The EF in this case is defined 

per unit of energy output, making the method more sensitive to operational variations. 

Due to the extensive data requirements, bottom-up methods are predominantly used for smaller-scale 

inventories, such as those focusing on specific regions or port areas. One of the primary data sources for 

this method is the AIS, which provides near real-time information on a vessel’s location, speed, and course 

[49]. Mentioned data is essential for modelling ship behaviour and estimating emissions accurately. AIS 

records enable experts to generate vessel-specific operation profiles, including average speeds and travel 

durations between defined waypoints, typically at short time intervals. These movement profiles can be 

used to reconstruct ship routes and assess emission patterns [44,50]. 

Although AIS equipment is mandatory for all commercial vessels of 300 GT or more and for all passenger 

ships under IMO regulations, a portion of maritime traffic still remains untracked due to non-compliance 
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or technological limitations [51]. Therefore, in order to improve the accuracy of emission inventories, AIS 

data should ideally be supplemented with other sources of maritime traffic information. 

1.3. Limitations in Existing Approaches 

1.3.1. Policy Context Limitations 

Despite continuous advancements of both international and regional policies for control of ship emissions, 

several limitations persist [52,53]. Although IMO’s Fourth GHG Study confirmed a reduction in carbon 

intensity-based on AER, other analyses, such as those from CE Delft, have suggested that this decline was 

influenced more by external economic factors (e.g., fuel costs and freight rates) than by regulatory success 

[9,54]. Fluctuations in market conditions impact the rate of newbuild orders, the application of energy 

efficient technologies and fuel consumption [54]. 

Moreover, estimates by the International Council on Clean Transportation (ICCT) indicate that the EEXI 

may reduce CO₂ emissions from the 2030 global fleet by as little as 0.7% to 1.3%, given that many ships 

already operate below the speed thresholds used in compliance calculations [55]. This calls into question 

the practical impact of technical measures like EEDI and EEXI when applied to fleets not operating at 

design speeds. Their real-world effectiveness, therefore, depends heavily on how ships are operated, not 

just how they are designed [55–58]. 

There are also concerns about the accuracy and completeness of the CII. While it incorporates annual fuel 

use, it overlooks emissions released during hoteling or anchorage, particularly relevant for vessel types 

like Cruise Ships, Ro-Ro Ferries, and containerships that frequently remain in port environments [59]. 

Additionally, current metrics primarily focus on CO₂ and do not account for other climate-relevant 

pollutants. Gases such as CH₄, N₂O, and black carbon (BC), all of which have far greater warming potential 

over short timescales, remain outside the scope of the current regulatory framework [17,22,25]. For 

example, methane has a global warming potential 84 times higher than CO₂ over a 20-year period, 

underscoring the need to broaden the scope of future IMO strategies to include these short-lived climate 

pollutants [60,61]. 

While the EU regulatory framework shows a clear intent to address maritime emissions, its practical 

implementation remains fragmented. Both MRV and EEA regulations are also focused on monitoring of 

CO2 emissions, overlooking other greenhouse gases and short-lived climate pollutants that contribute 

significantly to atmospheric warming and localised air quality degradation [37,39,40]. CH4, NOx, and BC 

are not currently included, despite their well-documented climate relevance and public health implications 

[62]. These regulations also fail to address other ambient air pollutants that pose significant health risks 

from both short- and long-term exposure, particularly when ships are berthed near populated areas. 

Mentioned lack of relevant types of emissions and spatial analysis is particularly problematic given the 

concentration of shipping activity in EU ports and the potential for localised pollution hotspots. In 

countries such as Croatia, where the national inventory still relies on Tier 1 estimation methods, the 

absence of detailed temporal and spatial data prevents accurate assessments of port-related emissions and 

hampers the development of targeted air quality policies. 

1.3.2. Limitations of Emission Inventories 

To enable a more detailed examination of ship-generated emissions in seaports involving multiple air 

pollutants and variations by vessel type, time, and location, detailed emission inventories are increasingly 

being developed [44]. Although these inventories rely on large volumes of emission-related data, the 

systematic review presented in Paper 1 demonstrated that such efforts tend to support only generalised 

recommendations for emissions control within examined area. The findings of these inventories are 

constrained by their spatial and temporal specificity, and do not facilitate comparative evaluation across 
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different vessels or port contexts. 

Further evidence from Paper 2, which introduced an analytical modelling approach, reinforced the 

conclusions drawn in Paper 1. It showed that the emission profiles and pollutant compositions reported 

across various studies were not directly comparable, either between ports or within the same port at 

different times. This inconsistency stems from significant variation in the pollutants selected for analysis, 

differences in the technical and movement-related parameters used, and divergences in the time frames or 

spatial boundaries applied in each study. 

Additionally, emission inventories that focus solely on reporting estimated emission volumes lack the 

depth needed to assess pollution intensity across vessels or over time. Without a structured scaling 

framework and relevant reference values, it becomes difficult to evaluate whether a particular ship, fleet 

segment, or entire port is performing efficiently or contributing disproportionately to local air pollution. 

A more holistic and standardised method is therefore essential for meaningful pollution evaluation and 

risk prediction. However, implementing such a system would require processing extensive datasets and 

examining complex interdependencies between multiple operational and technical factors, making the task 

computationally intensive. Based on the findings of Papers 1 and 2, there is a clear need for a unified, 

scalable assessment method that can improve the transparency, comparability, and effectiveness of ship 

and port-level emission evaluations.  
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CHAPTER 2 

2. Research Objective and Questions 

To address the mentioned constraints, the main objective of this research was to develop an adaptable, 

context-sensitive, and efficient DSS that quantifies, predicts, and evaluates ship-related emissions while 

also delivering feasible measures for effective air pollution control in port environments. This system 

integrates existing emissions inventory methodologies with novel air pollution performance indicators and 

advanced machine learning models based on extensive technical and operational emission-related data. 

The goal was to enhance the spatial and temporal evaluation of maritime emissions both at ship and at the 

port levels while supporting policy implementation, information sharing and environmental management 

through data-driven, comparable, and operationally realistic emission insights. To achieve this objective, 

the research was guided by the hypothesis that machine learning techniques can be used to analyse ship 

activity data and identify the most influential factors affecting gas emissions. By combining these findings 

with an optimisation algorithm, the system can predict emissions and propose effective measures for 

controlling air pollution in ports. 

This thesis addresses the current lack of standardised frameworks for evaluating the risk and intensity of 

ship emissions in port environments and aims to bridge the gap between academic emission inventory 

modelling and practical decision-making needs. The research builds upon a systematic review of existing 

studies and incorporates the development of an analytical emission quantification module, a predictive 

algorithm based on machine learning techniques, novel metric frameworks, and an optimisation system, 

all integrated within the PrE-PARE DSS. 

However, to conceptualise and develop such a system, several key research questions needed to be 

formulated and addressed throughout this thesis. Thus, the research questions and relevant explanations 

are summarised below, while Figure 1 shows their connection to the papers produced throughout the 

research process. 

RQ1: What are the methodological limitations and data inconsistencies in current ship emission 

inventories used in port areas, and how do these limitations hinder comparability and decision-

making? 

This question explores the deficiencies in existing inventory methods, particularly their lack of 

standardisation, variation in input data quality, and inconsistent pollutant coverage. Understanding these 

issues is essential to identifying the barriers to effective policy development and benchmarking of ship 

emissions at the port-level. 

RQ2: How can analytical modelling approaches be used to enhance the accuracy and 

interpretability of port-level shipping emission estimates? 

This question focuses on the development of an analytical model that improves transparency and 

replicability in emission estimation. It considers how combining technical ship data with activity-based 

parameters can produce realistic and context-specific emission outputs. 

RQ3: What indicators or metrics can be formulated to standardise the evaluation of emission 

efficiency and intensities across different ships and port areas? 

This question addresses the need for robust performance indicators that enable consistent evaluation of 

ship-related emissions. The emphasis is placed on developing a scalable method for assessing emission 
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efficiency, intensity, and optimisation potential by correlating baseline values to those observed within 

defined period. The aim is to facilitate the temporal classification of air pollution performance and to 

provide clearer insights into emission behaviour during specific operational windows. While primarily 

intended for temporal assessment within a single port environment, the approach is also adaptable for 

comparisons between individual vessels on international level and across ports using harmonised metrics. 

RQ4: How can machine learning methods improve predictive modelling of ship emissions in port 

operations? 

This question investigates the role of supervised machine learning in improving the predictive accuracy of 

emission models by capturing complex, non-linear relationships between integrated parameters of ships in 

different operational modes and pollutant outputs. Beyond forecasting, machine learning is also applied to 

evaluate and weigh the influence of various operational and technical factors on emissions, thereby 

informing the optimisation module. This enables the identification of the most impactful mitigation 

measures, supporting the development of targeted strategies for emission control under varying port 

conditions. 

RQ5: What are the practical implications of the developed PrE-PARE DSS for port management, 

shipping industry, environmental monitoring agencies, maritime policy stakeholders, and the 

wider public? 

This question addresses the real-world applicability of the PrE-PARE DSS. It explores how the system 

can support regulatory compliance, inform decision-making, and guide local emission reduction strategies. 

Additionally, it considers the potential for sharing clear, accessible emissions data with the general public 

to increase transparency and stimulate environmental awareness in port communities. 
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Figure 1. Research questions and their relation to the papers contributing to this doctoral research. 
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3. Motivation 

Although seaports operate under specific jurisdictions and regulations, in many cases they are physically 

and functionally integrated into the urban fabric, serving as natural extensions of coastal cities towards the 

sea. This is particularly evident across numerous European port cities, where port infrastructure is closely 

interwoven with the economic, social, and transport systems of the surrounding community. Given their 

locational specificity, economic importance, and functional complexity, ports must not only prioritise 

commercial efficiency but also acknowledge their environmental footprint and social responsibility.  

In this context, the protection of the surrounding environment becomes essential, especially when 

considering the external effects of maritime transport. Air pollution, marine litter, ballast water discharge, 

noise, oil spills, chemicals, and microplastics from antifouling paints are well known by-products of the 

shipping industry. However, among these, air pollution is particularly critical due to its immediate and 

long-term impacts on both public health and ecological systems. Exhaust gases released during port 

operations contribute to the degradation of local air quality and the intensification of greenhouse effects. 

These emissions are not only pervasive and persistent, but also capable of deeply penetrating human 

respiratory systems, often leading to severe, irreversible health outcomes. 

Ports, as dynamic logistical nodes, attract concentrated maritime activity which amplifies emissions, 

pushing the limits of localised air pollution. This cause-effect relationship underlines a critical problem, 

namely the lack of clearly defined regulatory thresholds for air pollution from ships, especially in port 

environments. 

Although indices such as the European Air Quality Index provide general standards for ambient air quality, 

there are currently no equivalent frameworks for categorising ship-based emissions in port areas [63,64]. 

Existing metrics developed by the IMO, such as the EEOI or the CII, focus solely on CO₂ and neglect key 

variables such as operational mode, temporal dynamics, and spatial distribution [9]. The example based 

on modern Cruise Ships illustrates the importance of this challenge. These vessels commonly operate with 

an installed power ranging from 5.5 to 7.5 megawatts (MW) [65]. Operating continuously for just one hour 

can consume over 6,500 kilowatt-hours (kWh) of energy, equivalent to the average annual electricity usage 

of nearly two European households [66,67]. The corresponding CO₂ emissions from such activity 

emphasise the disproportionate environmental impact even a single vessel can impose during one port call. 

The ongoing the continuous traffic growth and corresponding pollution motivated the formulation of the 

following questions: 

What constitutes a high and unacceptable level of emissions for a specific port? 

How can ships be objectively evaluated for emission efficiency based on their type and capacity? 

Which vessels should be prioritised for operational optimisation? 

To pursue data-driven and quantifiable answers, avoiding arbitrary appraisals, this research was inspired 

by the principles of smart port development and the potential of IoT technologies. The premise was to 

develop a user-friendly system that applies machine learning techniques and a novel emissions metric to 

large-scale technical and operational datasets. This would enable a comprehensive decision support 

platform focused on quantification, assessment, and ultimately optimisation of ship-sourced emissions in 

port areas. This logic is illustrated in Figure 2, which outlines the concept of the system. AIS-transmitted 

vessel movement data is integrated with technical ship specifications enabling emissions calculation and 

temporal mapping of air pollution contribution of each and overall marine traffic in port area. These results 

are then evaluated and classified into risk levels, which can be openly communicated to the public to raise 

awareness and support community engagement. When a high-risk level is identified, the system initiates 

a decision support loop by recommending targeted corrective measures to reduce emissions, thereby 

closing the optimisation cycle. 
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Figure 2. Conceptual overview of a ship emissions control framework for seaports based on IoT-enabled data 

integration and decision logic. 
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4. Research Structure, Strategy and Scope  

4.1. Research Structure and Strategy 

This compilation thesis is structured around a modular research framework, designed to progressively 

develop and integrate key components of the PrE-PARE DSS. These components collectively address the 

research questions (RQ1–RQ5) introduced in Section 2, and each paper contributes to one or more stages 

of the system’s development. The process follows a stepwise logic, where earlier outputs provide the 

empirical and conceptual basis for subsequent stages, culminating in a comprehensive, scalable tool for 

supporting air pollution control in port areas. 

The research began with a systematic literature review presented in Paper 1, where 32 original papers and 

28 large-scale studies focused on port-related ship emissions were analysed. Using the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) approach and a bottom-up multi-layer 

analysis, the review identified prevailing methods, data inputs, and key challenges in emission 

quantification. Also, the analysis revealed a critical gap: existing approaches lack scalability and 

comparability, which obstructs meaningful evaluation of emission contributions across ports, ships, and 

time periods. These findings motivated the need for a more transparent, interpretable, and standardised 

framework that combines quantification and metric system, laying the methodological foundation for the 

entire research and justifying the development of the PrE-PARE DSS. 

Building upon those findings, Paper 2 introduced a fully operational analytical model designed to quantify 

ship-sourced emissions at high temporal and spatial resolution. Using the data types and methodological 

structure identified in Paper 1, the model integrated technical and movement datasets to produce a detailed 

emissions inventory for the passenger basin of Port of Split in 2019. For acquisition of ship technical 

details, the Croatian Registry of Shipping (CRS), the Croatian Integrated Maritime Information System 

(CIMIS), and relevant web databases where used. AIS data, provided by the Faculty of Maritime Studies 

in Split, were filtered and converted to ensure high-resolution coverage. Therefore, the research strategy 

at this stage involved completing the full data preparation process to ensure accurate production of outputs 

throughout the research. This contribution constituted Module 1 – Quantification and analysis, 

materialising the methodology from Paper 1. While it enabled detailed emissions analysis, the results also 

confirmed the limitations noted earlier: the inability to systematically evaluate emission efficiency or 

pollution risk over time or in different operational scenarios without an appropriate scaling framework, 

even within the same area.  

To address the identified limitations, Paper 3 extended the model by incorporating a novel metric 

framework alongside predictive modelling component. This phase of the research corresponds to Module 

2 – Predictive module and Module 3 – Ship emissions metric, scaling, classification and ranking module. 

Building on the inventory results produced in Paper 2, a MARS method was applied within the predictive 

module. This supervised machine learning technique was selected as the most appropriate for analysing 

the processed datasets, with the objective of identifying emission-influencing factors and forecasting ship 

emissions under varying operational scenarios. 

By relying on the same extensive database, a novel system for scaling, classification, and risk evaluation 

was proposed to evaluate the emission performance of individual ships and the overall temporal pollution 

load within the port area as main task of Module 3. This allowed for an efficient, standardised, comparable 

and coherent characterisation of air pollution profiles that could be used in both operational monitoring 

and regulatory evaluation. 

Finally, the Paper 4 (in preparation) focuses on the integration of Module 4 – Optimisation, as the last 

component encircling DSS for ship-based emission control in port areas. This module uses the outputs 

from previous papers as input parameters for evaluating feasible mitigation scenarios and selecting 
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appropriate pollution control measures based on available operational conditions. The resulting tool not 

only supports high-resolution predictive forecasting and performance evaluation but also delivers 

actionable insights to support regulatory planning and port-level decision-making. 

In summary, the modularity of the research structure enables a logical progression from conceptual review 

to operational modelling, predictive analytics, and finally decision-oriented optimisation. Each module 

corresponds to a dedicated research paper, while the integrated framework constitutes the PrE-PARE DSS. 

Figure 3 provides the overview of the thesis structure and relation between the research objectives and 

papers in which they were achieved and presented.  

 
Figure 3. Overview of the thesis structure summarising the relations between with main research materials, relevant 

papers and outcomes.  

4.2. Research Scope and Limitations 

This thesis introduces a modular DSS designed to quantify, evaluate, predict, and optimise ship-related 

emissions in port environments. While the modularity of the framework enables the integration of 

additional datasets and diverse methodological perspectives in future research, the current study is 

delimited to specific environmental, geographical, and technical contexts. 

The scope of this research includes the development of a scalable emission quantification methodology, 

forecasting algorithms based on machine learning, performance metric systems, and an optimisation 
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module. Together, these modules aim to provide insight into the temporal and operational dynamics of 

ship-based emissions, offering guidance for mitigation strategies under existing port conditions. 

The delimitations of this thesis include: 

• The study is focused exclusively on ship-sourced air pollutants (e.g., CO₂, NOₓ, SOₓ, PM, CH₄, 

NMVOC, CO) in port environments. Other contributors to air pollution in port areas, such as road 

traffic and port-related industrial activities, are not considered in this study. Emissions of NMVOC 

from cargo handling and bunkering operations are also excluded due to their minor scale and 

negligible contribution in the context of overall ship-related emissions. In addition, other 

environmental issues, such as underwater noise, marine litter, and ballast water discharge are 

beyond the scope of this research. 

• The emissions were quantified by combining the energy-based calculation method with bottom-

up logic, selected as the most exhaustive approach. Consequently, alternative monitoring 

techniques, such as direct air sampling via sensors or remote sensing through satellite 

observations, were not prioritised in this research. These methods, while valuable for certain 

applications, fall outside the scope of the methodological focus adopted in this study. 

• The analysis is restricted to port operations and does not cover emissions generated during open-

sea navigation. The results, although scalable, are derived from case-specific data obtained from 

the Port of Split and may not directly generalise to ports with significantly different vessel traffic 

or regulatory frameworks. 

• While several air pollution mitigation strategies are acknowledged, the optimisation module 

primarily addresses feasible operational measures (e.g., turnaround optimisation, berth 

scheduling, speed reduction). The analysis does not model technological transitions such as fuel 

switching, shore power, or engine retrofitting due to current infrastructural and regulatory 

limitations in the research area. 

• Broader socio-economic and policy implications of emission reduction strategies are mentioned 

but not systematically analysed. The primary focus remains on technical and environmental 

parameters. 

The limitations of this study refer to factors beyond the researcher's control that may influence the accuracy 

or generalisability of the results: 

• AIS Data Coverage: Not all vessels are required to use AIS under IMO regulations. As a result, 

smaller vessels, though less impactful in terms of emissions, may not be fully accounted for. 

Additionally, transmission errors and missing AIS signals required filtering and cross-verification 

with national shipping statistics. 

• Load Factor Estimation: LFs for main engines were derived using propeller law, but generator 

(AE) workloads lacked direct data. Instead, static values from compatible studies were applied 

based on ship type and operating context. 

• Fuel Composition Uncertainty: Fuel composition can vary between deliveries even within the 

same type. Estimates were made based on applicable regulations and engine types, introducing 

some assumptions. 

• Emission Factor Variability: EFs are influenced by multiple parameters including engine 

condition, fuel type, and operating mode. Since no specific EF data were available for vessels in 

the study area, values were derived using standardised methods and datasets, with a recognised 

degree of uncertainty. 

• Weather and Environmental Conditions: The effect of meteorological conditions such as wind, 
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sea state, and ambient temperature on fuel consumption was not directly modelled. However, 

seasonal fluctuations in temperature were considered, especially for auxiliary systems of 

passenger ships. Broader integration of meteorological data is recommended for future research. 

By acknowledging these delimitations and limitations, the research clarifies the contexts within which the 

findings are valid, while outlining opportunities for further development and enhancement of the DSS. 
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CHAPTER 3 

5. Research Summary 

5.1. Literature Review  

Although already discussed in Introduction, particularly Section 1.2.2. (Concept of Emission Inventories 

as Monitoring Tools for Ship-Sourced Air Pollution in Ports) and Section 1.3.2. (Limitations of Emission 

Inventories), this segment of the thesis presents a focused summary of the methodological framework and 

outcomes derived from Paper 1. The study provides a comprehensive systematic review of existing port-

related ship emission research and is central to establishing the research foundation for the development 

of the PrE-PARE DSS. 

5.1.1. Objectives and Motivation 

The main objective of Paper 1 was to analyse existing research methodologies and types of data related to 

ship emissions in port areas, identify knowledge gaps, and propose a suitable structure for a scalable and 

standardised emission estimation model. The motivation stemmed from the diverse and inconsistent 

methodologies applied in literature, which hinder the comparability and standardisation of emission data 

across ports. Therefore, this review aimed to synthesise the most reliable practices into an aggregated and 

applicable approach. 

5.1.2. Review Methodology Overview 

5.1.2.1. Systematic Review Approach 

The review was conducted using a bottom-up, multi-layer analytical approach developed specifically for 

this research, which integrates four sequential analytical layers, depicted in Figure 4 [68]. 

• The first layer involved conducting an analytical review of the methodologies and datasets 

employed in scientific papers and large-scale studies (inventories) addressing port-related ship 

emissions, using a bottom-up approach guided by the PRISMA framework [68,69]. Subsequently, 

the methodological foundations of each selected publication were carefully analysed and traced 

back to their original sources.  

• In the second layer, the identified methodological sources were subjected to an exclusion process, 

then compiled and quantified to determine the most frequently applied techniques within the 

reviewed body of literature.  

• In the third layer, the focus was on evaluating and comparing the methodologies and data used in 

the most commonly cited studies.  

• Based on this evaluation, the final layer presented a recommended methodology for quantifying 

ship emissions in port areas, with a detailed explanation of all relevant factors. 
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Figure 4. Bottom-up multi-layered analysis approach presented in the Paper 1. 

 

5.1.2.2. Literature Search 

The review process began with a keyword-based search across the Web of Science Core Collection, 

Scopus, and Google Scholar, using combinations of terms such as port, ship, emissions, inventory, gas, 

pollution, quantification, and method. After initial screening, selected documents were further examined 

to extract references related to methodologies and datasets. These references were then used to conduct a 

secondary review, which extended the search to institutional and organisational websites cited in the 

original literature. By combining keyword and reference-based searches, the methodological approaches 

and datasets used in each paper were traced back to their original sources. Ultimately, 32 original scientific 

papers and 28 large-scale emission inventories were analysed, covering over 80 ports globally within the 

2008–2021 timeframe [3,6,8,31–33,45,48,70–121]. This completed the first layer of the analysis, as 

illustrated in Figure 5. 
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Figure 5. PRISMA 2020 analysis flow diagram for systematic reviews which included searches of databases, 

registers and other sources from the Paper 1. 
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5.1.2.3. Key Findings by Layer 

• First Layer: Analytical Overview 

The majority of the studies reviewed utilised a bottom-up methodology, specifically favouring energy-

based approaches due to their localised and high-resolution advantages. Top-down or fuel-based methods 

were generally restricted to macro-scale inventories. The most commonly used activity data source was 

AIS with technical specifications obtained from a combination of ship registries and global (web) 

databases. 

• Second Layer: Reference Quantification 

This stage involved the removal of duplicates, narrowing down to ten unique methodological references 

and sixteen primary datasets. Frequently cited sources included: 

• US EPA (2006, 2009) 

• ENTEC (2002–2010) 

• EEA (2009–2020) 

• POLA/POLB (Port of Los Angeles/Port of Long Beach) 

• SMED/IVL (Swedish Environmental Emission Data / Swedish Environmental Research 

Institute) 

These references contributed EFs, LFs, and operational assumptions crucial to the reviewed studies. 

• Third Layer: Methodological Comparison 

The following models were explored in detail: 

• ENTEC/NAEI: Provided a UK-based framework using fuel type, engine power, and 

abatement technologies. 

• US EPA: Introduced a rigorous bottom-up, energy-based structure segmented by voyage 

activity. 

• POLA/POLB: Developed a comprehensive local emissions inventory based on AIS data. 

• EEA Tier 3: Supported tiered inventory development, with Tier 3 designed for data-

extensive port-level emissions. 

• SMED/IVL: Swedish models offering current EFs and context-specific data. 

Each of these models incorporates a unique combination of static inputs (e.g., ship dimensions and engine 

configurations), dynamic inputs (e.g., activity durations and voyage speeds), definitions of operating 

modes and EF values. 

• Fourth Layer: Proposed Estimation Approach 

A consolidated bottom-up energy-based methodology was developed, integrating best practices across the 

reviewed studies. This method employs a combination of technical details, ship activity data and 

EFs. Static technical data detailing ship and engine specifications, such as main and auxiliary engine power 

(PME/AE), engine function, engine type, and fuel type, serve as the basis for emission calculations. 

Dynamic data is characterised by ships actual voyage speed, course, position and corresponding timesteps 

derived from AIS. These datasets are used to categorise ship operational modes (activities) defined by the 

percentage of main engine (ME) and AE load, expressed as LF. Since engine workload directly influences 

emission levels, the time spent in different operational phases, cruising, manoeuvring, and hoteling, must 

be considered in the analysis. As the essential and most complex part of the emissions quantification 

process, the emission factor (EF) relies on a combination of static data, such as engine function, speed, 

engine type, and fuel type, and dynamic data reflecting the ship’s operational characteristics.  
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Accordingly, the bottom-up, energy-based methodology outlined in Equation (5) which incorporates key 

factors identified through a systematic review is applied in the emission quantification module developed 

as part of this research (Paper 2 and Paper 3).  
 

 E = (PME × LF × EFME + PAE × LF × EFAE) × T × CF (5) 

Where: 

 

E: Emissions quantity by mode for each ship call – in grams (g); 

PME/AE: total power of main engines/auxiliary engines – kilowatts (kW); 

LF: load factor expressed as actual engine work output – as a percentage of engine power (%); 

EFME/AE: emission factors of different pollutants in regard to engine function, engine type, fuel type, 

and installation year – in grams per kilowatt hour (g/kWh); 

T: time spent in a certain movement activity – in hours (h); 

CF: correction factor for emission reduction technologies – constant. 

Along with determining data and methodological approach, through its systematic, multi-layered analysis, 

Paper 1 identified substantial inconsistencies in both methodological approaches and data application in 

the reviewed studies. These differences pose a limitation to standardisation and prevent the comparability 

of emission inventories between ports and periods, thereby directly addressing RQ1. 

5.2. Methodology - Structure of the PrE-PARE DSS 

Upon defining the base parameters and methodological foundation for quantifying ship emissions and 

identifying key limitations and inconsistencies in inventory practices through the systematic review 

presented in Paper 1 it became possible to construct a modular framework for comprehensive emission 

control. The structure of the PrE-PARE DSS, illustrated in Figure 6, comprises four interlinked modules, 

each sequentially developed based on the methodologies and outputs presented in the preceding research 

papers. 
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Figure 6. Conceptual flow diagram of the PrE-PARE DSS, adapted and expanded from the version originally 

introduced in Paper 3. 

The first module dedicated for the quantification and analysis of emissions was introduced in Paper 2 and 

subsequently applied in Paper 3. Here, technical and movement data are prepared to reconstruct full voyage 

trajectories for each ship arrival, stay, and departure. Based on this reconstruction, emissions are calculated 

with high temporal and spatial resolution, providing a robust dataset for further predictive analysis.  

In the second module, developed within Paper 3, machine learning algorithms are introduced to model 

emission trends and project future outputs. Since each vessel’s operational trajectory is treated as a 
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complex data cluster containing numerous influencing variables, the MARS method was identified as the 

most suitable modelling technique. It enables both the quantification of influence among factors and the 

prediction of emissions under varying operational scenarios. To verify its performance, ten-fold cross-

validation was conducted, along with additional validation using independent datasets not included in the 

training process. 

The third module, also presented in Paper 3, builds upon these results to deliver comprehensive evaluation 

of emissions performance. This is achieved through the introduction of several novel metrics that enable 

scaling, classification, and ranking of emissions from individual ships, groups of vessels, and entire port 

operations. The framework supports transparent comparisons and allows for systematic tracking of air 

pollution risks and efficiency outcomes over time. Importantly, the PrE-PARE DSS incorporates not only 

CO₂, but also other greenhouse gases such as CH₄, and a full spectrum of APSs (SOₓ, NOₓ, PM₁₀, PM₂.₅, 

NMVOC, CO). This allows for a holistic assessment of ship emissions that extends beyond what is 

currently offered in most regulatory reporting tools. 

The fourth and final module, currently presented in this thesis and is part of Paper 4 (in preparation), 

represents the optimisation layer. It builds on the results generated in previous modules to assess risk, 

identify inefficiencies, and propose actionable mitigation measures. Depending on the severity of the 

emissions classified by the system (e.g. high or very high category), corrective actions are proposed at 

either the ship or ship type level. These recommendations may include operational interventions such as 

adjusting berth duration, speed reduction, or coordination of manoeuvring procedures, as well as broader 

strategies for scheduling and prioritisation. The optimisation process continues in an iterative cycle until 

emissions are reduced to acceptable levels, using performance-based indicators to guide decision-making. 

Because the system is constructed using universal emission-related parameters and open-source 

processing, it is not limited to a specific case study and can be adapted to other ports or regions. 

Furthermore, its modular design enables continuous upgrading, including the integration of new emission 

types, external data streams, or regulatory factors. All algorithms and data-handling were developed using 

the RStudio 2023.09.1+494 software package, ensuring transparency and reproducibility. 

Therefore, the present section summarises the overall structure of the PrE-PARE DSS, outlining the logical 

interrelation of the modules and the systemic flow of data. Detailed explanation of each module, including 

methods for data acquisition, preparation, modelling, and application, is provided in the following 

subsections. 

5.2.1. Defining Input Databases – Technical and Operational Data 

The majority of data used in this research was obtained during the development of Module 1, as detailed 

in Paper 2, with supplementary datasets acquired later to support the validation of the predictive module 

introduced in Paper 3. Since the passenger basin of the Port of Split was selected as the case study area, 

this section outlines both the spatial and operational characteristics of the port, as well as the specific 

technical and movement-related databases that were utilised as input parameters throughout the PrE-PARE 

DSS framework. 

5.2.1.1. Context of the Case Study Area – Maritime Traffic Characteristics and Spatio-

Temporal Specifications of the Port of Split 

The methodologies within this research were applied with a focus on the Port of Split, specifically its 

passenger basin, as the primary case study, with data corresponding to the 2019 calendar year. This period 

was selected as it marked a peak in port activity at a time when this part of the research was conducted, 

offering a representative operational context for analysis. 

The Port of Split stands as one of the busiest passenger and vehicle ports in the Mediterranean. In 2019, it 

handled more than 5.6 million passengers and over 829,000 vehicles [122]. In contrast, cargo throughput 
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remained of local significance, with approximately 2.9 million tonnes recorded [122]. As a result, port 

traffic was dominated by passenger-focused vessel types, primarily Ro-Ro Ferries, High Speed Craft, 

Cruise Ships, and leisure vessels. Collectively, these categories accounted for nearly 90% of all vessel 

arrivals. 

Geographically, the port is divided into two distinct zones by the urban structure of the city of Split. The 

northern section, known as the North Port, is situated on the peninsula’s northern coastline and 

predominantly serves cargo vessels. The southern part, referred to as the City Port basin, is oriented 

towards passenger services and accommodates the vast majority, around 90%, of the port’s maritime 

traffic. Its close integration with the historical and commercial centre of Split results in a dense overlap 

between port operations and the urban environment. This spatial configuration, illustrated in Figure 7, 

highlights the potential for port-related air pollution to pose significant risks to public health, especially 

given Split’s status as Croatia’s second-most populous city. Moreover, the port’s strategic role as a 

transport gateway to the Adriatic islands and the Italian coast, alongside its growing popularity as a cruise 

destination, underscores the urgency for enhanced emission monitoring and control. Accordingly, the 

present study narrowed its analytical scope to the passenger basin, where shipping activity and 

environmental exposure are most intense. The defined research area, along with its geographical 

coordinates, is visualised in Figure 8. 

 

Figure 7. Spatial layout of the Port of Split, highlighting the North Port (yellow) and City Port basin (red), in direct 

proximity to the Split city centre. The integration of the City Port into the urban core is of relevance for air quality 

assessment. Originally presented in Paper 2. 
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Figure 8. Geographic location of the research area with reference to the Adriatic region. The lower panel provides a 

magnified view of the defined port activity zone used for emission modelling. Originally presented in Paper 2. 

5.2.1.2. Data Acquisition and Integration: Technical Specifications and AIS Movement 

Records 

To compile a comprehensive dataset for emission quantification, prediction and evaluation, a detailed 

technical database was created by linking ship identifiers, specifically name, type, and Maritime Mobile 

Service Identity (MMSI) number, to multiple information sources. These included the CRS, the CIMIS, 

and verified online resources from ship operators and public registries. The compiled technical parameters 

encompassed GT, vessel length and breadth, year of build, ME and AE power, engine type and speed, fuel 

type, maximum ship speed at maximum continuous rating (MCR), and installed emission reduction 

technologies. Where discrepancies or redundancies were encountered, data from the CRS was treated as 

the primary source to ensure consistency and reliability. 

The AIS, while originally developed to enhance navigational safety through the real-time transmission of 

ship-related data to other vessels and shore stations, has become a valuable tool for operational analysis 

[123]. This system broadcasts both static and dynamic ship data. Static AIS data includes MMSI number, 

IMO number, vessel type, name, length, and call sign [124]. Dynamic AIS data, on the other hand, captures 

positional and navigational parameters such as geographic coordinates, timestamp, course over ground, 
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and speed over ground [124]. 

For this study, a full AIS dataset was provided by the University of Split - Faculty of Maritime Studies. 

Given that AIS transmissions do not include engine specifications or operational LFs, critical for emission 

modelling, only the dynamic AIS components were used for tracking ship trajectories. The static AIS 

identifiers served exclusively to merge movement data with the previously constructed technical database, 

ensuring a seamless integration of ship characteristics and operational records across the PrE-PARE DSS. 

5.2.2. Module 1: Emission Quantification and Analysis 

This component, initially developed and validated in Paper 2 and later adapted in Paper 3, forms the 

foundational module of the PrE-PARE DSS system’s modular architecture. Its core function is to generate 

a high-resolution inventory of ship-sourced emissions including CO₂, CH₄, NOₓ, SOₓ, CO, PM₁₀, PM₂.₅, 

and NMVOC, while also providing comprehensive technical, spatial, temporal, and operational profiles 

of maritime traffic within port areas, fulfilling the objectives outlined in RQ2. 

To fulfil this objective, a structured multi-step methodology was employed, involving the systematic 

collection, integration, and preprocessing of both technical and operational datasets. The process 

encompassed cleansing, formatting, and merging extensive dynamic AIS records with static ship technical 

data, enabling emissions to be estimated for each individual port call and aggregated over broader 

operational periods. Once the data preparation was completed, the bottom-up energy-based method was 

applied to every vessel that called at the Port of Split in 2019. This approach, aligned with the 

methodological recommendations highlighted in the Key Findings section of the Paper 1 review, allowed 

for emissions to be quantified with high-density and accuracy.  

Together, these variables and procedures, ranging from data acquisition to preprocessing and final 

emissions estimation, form the core of the quantification and analysis workflow. This process is 

summarised in Figure 9, which illustrates the structure of Module 1. The figure presents a detailed 

overview of the module's design, including the integration of static and dynamic datasets, the calculation 

of LFs, identification of operational modes, and the application of EFs. These elements collectively 

underpin the bottom-up energy-based estimation model expressed in Equation (1), which has been 

consistently implemented throughout the PrE-PARE DSS. 
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 Figure 9. Flow diagram of Module 1 for quantifying ship emissions. 

 

Within the grey box, which outlines the technical attributes used in the model, several abbreviations are 

applied: MMSI refers to Maritime Mobile Service Identity; GT denotes Gross Tonnage; D represents 

Diesel engines; GTU stands for Gas Turbine Unit; STU for Steam Turbine Unit; and DF indicates Dual-

Fuel engines. Engine speed categories are marked as SS/MS/HS D, referring to Slow-, Medium-, and 

High-Speed Diesel engines, respectively. Common fuel types include HFO (Heavy Fuel Oil), MDO/MGO 

(Marine Diesel Oil/Marine Gas Oil), and LNG (Liquefied Natural Gas). MCR refers to the maximum 

power output tested by the engine manufacturer [94]. Typically, ships operate at a nominal continuous 

rating, calculated as 85% of 90% of the MCR value [107]. The dark blue box indicates the use of NMEA 

(National Marine Electronics Association) sentence format. 

5.2.2.1. Data Preprocessing Workflow 

The preprocessing phase began with the handling of dynamic AIS datasets. However, as AIS transmits 
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signals in the NMEA sentence structure, which is not directly compatible with RStudio software, a 

dedicated Python script was developed and embedded within the first module to convert the raw AIS data 

into a readable CSV (Comma Separated Value) format [125]. During the subsequent preprocessing stage, 

all non-ship and erroneous entries were excluded, resulting in a cleaned dataset comprising 49,540,895 

valid records for vessels operating in 2019 within the research area. These entries served as the basis for 

emission estimations within the quantification module and were also used for training and testing in the 

predictive module. An equivalent procedure was later applied to collect an additional 15,930,840 AIS 

reference points for ships calling at the same port during 2021, 2022, and 2023. These supplementary 

datasets, treated as unseen data, were used to perform extended validation of the predictive model.  

Once the AIS records were processed, they were merged with corresponding technical data for each vessel 

using unique identifiers through a dedicated script developed within the RStudio environment. Technical 

details of ships included GT, vessel dimensions, engine types and speed, fuel type, design speed of vessel, 

and any installed emission control technology. By linking each AIS point to a ship’s technical profile using 

identifiers such as MMSI, IMO number, and vessel name, it was possible to obtain a complete operational 

picture of each port call in 2019. 

The next step in this phase involved classifying ships into defined types. This categorisation was based on 

a combination of vessel function and specific technical attributes, such as size, speed, and engine 

specifications. In cases where certain vessel groups displayed high variability in parameters like engine 

power, probabilistic distribution methods were used to refine the classification further. This approach 

ultimately led to the identification of eleven distinct ship types: 

• Large Cruise Ships 

• Ro-Ro Ferries 

• Large Ro-Ro Ferries 

• Small Cruise Ships 

• Medium Cruise Ships 

• High Speed Crafts 

• Excursion Ships 

• Tugs 

• Pleasure Craft 

• Fishing Vessels 

• Sailing Ships 

Grouping vessels according to these multiple criteria not only enhanced the precision of imputing missing 

technical data but also established a foundation for the predictive modelling developed in the subsequent 

module. 

5.2.2.2. Operating Mode Identification and LF Estimation 

Once the ship trajectories were defined, each movement was further classified into specific operational 

modes: cruising, manoeuvring, and hoteling. This segmentation was essential for accurately estimating 

emissions, as engine workload and pollutant output vary considerably across these phases [9,126]. It is 

well established that engine load has a direct impact on combustion efficiency and, consequently, on 

emission levels [76]. Studies suggest that engines achieve optimal efficiency at around 80% load, with 

performance deteriorating at lower loads, especially below 20% load. To identify these segments, the LF 

of the ME was calculated using the propeller law as expressed in equation (6) [9,126]: 
 

 LF = (SA/SM)3 (6) 
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Where:  

 

SA: actual speed of the ship – in knots (kt);  

SM: speed of the ship at MCR – in knots (kt).  

Modes were classified as follows: 

• Cruising: LF > 20% 

• Manoeuvring: 0% < LF ≤ 20% 

• Hoteling: LF = 0%, ME off, AE in use 

While the generators' workloads reflect the power demands of each operational mode, they cannot be 

predicted using the propeller law or comparable approaches. As a result, LFs for AEs are typically 

uncertain [44,107]. Due to the lack of detailed studies on AE workloads for ships operating within the 

study area, static LF values were adopted from several large-scale studies and publications that involve 

comparable traffic patterns and spatial conditions [31,40,126]. 

5.2.2.3. EF Assignment and Calculation 

Following mode identification, appropriate EFs were assigned to each activity segment. These were not 

predefined in the AIS or technical datasets but were introduced at the final stage of preprocessing. EFs 

were selected based on engine function (main or auxiliary), engine type, fuel type, and year of installation, 

and derived from the IMO 3rd and 4th Greenhouse Gas Studies and the San Pedro Bay Ports Report 

[3,9,126]. This step ensured emissions estimation aligned with international standards while reflecting 

realistic engine behaviour. The types of EFs, along with the elements for identifying them, are presented 

in Table 1. 

Table 1. Engine details, modes of operation and types of EFs incorporated in the model as present in Papers 2 and 

3. 

5.2.3. Module 2: Predictive Module 

Following the comprehensive emissions inventory generated in Module 1 where raw data was pre-

processed and emissions were systematically quantified and analysed, the second component of the PrE-

PARE DSS was developed as a part of Paper 3 to support emission forecasting, thereby directly addressing 

RQ4 related to predictive modelling. This predictive module is designed to anticipate ship-sourced 

emissions across a range of operational scenarios by modelling the complex, non-linear relationships 

between technical specifications, operational variables, and actual emission outputs. Since ship-generated 

pollutants are influenced by a range of interdependent variables, including engine characteristics, energy 

output, and voyage profiles, traditional linear models are insufficient for accurate forecasting. To address 

this, a non-linear modelling approach was adopted. 

 

Elements for determination and types of EFs 

Engine 

function 
Engine 

type 
Engine speed 

(rpm) 
Fuel 

type 
Mode & LF 

GHG 

EFs 
APS 

EFs 

ME D SS D < 300 MDO/MGO C LF.= > 20 % CO2 SOx 

AE GTU MS D 300 - 900 HFO M LF.  <  20 % CH4 NOx 

 STU HS D > 900 LNG H LF,= <   2 %  PM10, 2.5 

 DF      NMVOC 

 D-E      CO 
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5.2.3.1. Multivariate Adaptive Regression Splines (MARS) 

MARS was selected as the most suitable machine learning method for modelling the non-linear and 

interactive effects between the independent variables (e.g. engine power, fuel type, LF) and the dependent 

variables (emission values) [127]. MARS constructs flexible, piecewise regression models using basis 

functions, mathematical splines that allow the model to adapt to local variations in the data [128]. 

The modelling process consists of two key stages: 

• Forward phase: Iteratively introduces basis functions that improve the model’s fit by 

identifying breakpoints (knots) within the predictor variables [127,129]. 

• Backward (pruning) phase: Eliminates those basis functions that contribute the least to 

predictive accuracy, minimising overfitting [127,129]. This is guided by the Generalised 

Cross-Validation (GCV) criterion, which balances model complexity and error. The GCV 

can be expressed as follows (7) [128]: 
 

 
GCV(M) = 

1
n

 ∑ (y
i

n
i=1 − f̂

M
 (xi)

2
)

(1 − C(M)/n)
2

 (7) 

To improve robustness, the study evaluated both standard MARS and Boosting MARS (B-MARS) 

methods, with and without log-transformed targets [130]. This resulted in four predictive variants, all 

trained using 2019 data derived from Module 1. Hyperparameter tuning was conducted using ten-fold 

cross-validation, ensuring reliable performance assessment across different data partitions. 

5.2.3.2. Performance Evaluation and External Validation 

To evaluate the predictive performance of the MARS models, three widely accepted statistical metrics 

were applied: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of 

Determination (R²), as presented in Equations (8), (9), and (10) [127]. These metrics are commonly used 

to assess the accuracy and robustness of regression-based models in environmental and technical 

forecasting. 

R²: Indicates how well the model explains the variance in the target variable. Its value ranges from 0 to 1, 

with values closer to 1 signifying better model performance and a stronger correlation between predicted 

and actual values [131,132]. RMSE: Measures the square root of the average squared differences between 

predicted and observed values. Since it is sensitive to large errors, lower RMSE values indicate better 

predictive accuracy [131]. MAE: Reflects the average absolute difference between predicted and actual 

values. Unlike RMSE, it treats all errors equally. As with RMSE, lower MAE values represent more 

accurate predictions [132]. 

In addition to standard model evaluation metrics, this study incorporated an extended validation phase 

using previously unseen shipping data from the years 2021, 2022, and 2023. Emissions were first 

calculated based on this new dataset and then compared to the predictions generated by the model trained 

on 2019 data. This comparative approach provided a robust assessment of the model’s forecasting accuracy 

and perform reliably in different operational periods.  
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RMSE = √
∑ (X

i
n
i=1 − Yi)

2

n
 (10) 

where Xi is the predicted ith value, and the Yi element is the actual ith value, while n stand for the number 

of samples [127,132]. 

5.2.4. Module 3: Ship emissions metric, scaling, classification and ranking  

As the central analytical component of the PrE-PARE DSS, Module 3 was developed as a part of Paper 3, 

to translate complex emission data into meaningful performance metrics, with the objective of supporting 

port authorities and stakeholders in identifying key polluters, understanding emission dynamics, and 

informing optimisation strategies. While emission quantification (Module 1) and prediction (Module 2) 

offer high-resolution insights into actual and forecasted exhaust outputs, Module 3 focuses on 

interpretation, comparison, and communication of these results through novel indicators and classification 

systems, leading to clear explanation of the RQ3. These tools are grounded in the measured operational 

output of ships and aim to overcome the limitations of inventories and global carbon-centric metrics such 

as the IMO’s EEDI, EEOI or CII, which typically overlook port-specific behaviours, non-CO₂ pollutants, 

and mode-specific operational distinctions [9,17]. 

 

5.2.4.1. Development of Emission Metrics and Scaling Logic 

Since the core mission of maritime transport is to ensure safe and efficient service, emissions must be 

assessed relative to this functional objective. Thus, to enable a standardised and transparent approach for 

assessing the operational efficiency and environmental impact of individual ships, it was first necessary to 

define and measure the energy output of ships as a consistent operational outcome. This is captured by the 

Operational Efficiency (OE) that can be described as a ship’s capacity to complete its voyage within the 

expected timeframe while using the least possible amount of energy, as shown in Equation (7). 
 

 OE (kWh) = ∑ Operational LF (kW) × Operational time (h)

C,M,H

 (11) 

In the context of port operations, a voyage is defined as the complete sequence of a ship's arrival, stay, and 

departure, incorporating the three key operational modes: cruising, manoeuvring, and hoteling. This 

segmentation enables a thorough assessment of a vessel’s operational behaviour. By aligning the time 

required to achieve the expected OE with the vessel’s operational capacity, and then comparing this to the 

emissions produced throughout the voyage, it becomes possible to calculate the Vessel Air Pollution 

Operational Rate (VAPOR) for each mode, as outlined in Equation (12). In contrast to IMO’s existing 

metric frameworks, VAPOR utilises available operational data and emission values to assess performance 

across the entire voyage. It does so by calculating the average hourly emissions per unit of work capacity 

for each operational phase individually. This approach facilitates a more precise and standardised measure 

of emissions efficiency.  
 

 
VAPOR =  

Emissions (g)

Work capacity × Operational time (h)
 (12) 

To maintain consistency, interpretability, and comparability across different vessel types and operational 

contexts, the calculated VAPOR (VAPOR-c) for an individual ship is normalised using feature scaling. 

This is done by comparing it to the baseline VAPOR (VAPOR-b) representative of the relevant ship type. 

The resulting ratio defines the Ship Air Pollution Efficiency (SHAPE), as presented in Equation (13). The 
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VAPOR-b values are derived from a comprehensive emissions database built for each ship type group, 

previously categorised in the system’s first module. SHAPE therefore serves as a benchmark indicator, 

showing whether a specific vessel performs better or worse in terms of emissions efficiency relative to its 

category average. Additionally, it allows tracking of efficiency improvements over time for individual 

vessels and vessel groups. 
 

 
SHAPE = 

VAPOR-c

VAPOR-b
 (13) 

Furthermore, to enhance public understanding and accessibility, a simplified and intuitive metric system 

has been introduced to clarify the contribution of individual ships to port-related air pollution. This metric, 

known as the Ship Emissions Impact Level (SEIL), measures the emissions produced by a specific vessel 

during a single voyage in comparison to the average emissions per voyage of a typical or baseline ship 

over a defined period, as expressed in Equation (10). By offering a straightforward and standardised 

emissions impact scale, SEIL enables the broader port community to easily interpret, assess, and compare 

the environmental footprint of different ships during their port visits, initiating public awareness. 

5.2.4.2. Classification and Prioritisation Framework 

Although the emissions are quantified using a bottom-up approach, the evaluation framework progresses 

from a top-down perspective, beginning with an assessment of total exhaust gases emitted across the entire 

port area, followed by examining the relative contributions from different ship types, and concluding with 

the performance evaluation of individual vessels. This sequential structure ensures a comprehensive and 

methodical assessment, initially identifying the overall air pollution risk, then measuring the intensity of 

emissions across ship categories, and finally determining vessel-specific performance indicators, allowing 

for the optimisation-ranking of individual ships. The process also incorporates the SHAPE metric, 

alongside a calculation of emission optimisation potential, to support a balanced and evidence-based 

approach to managing ship-sourced air pollution both ship and at the port perspectives. 

To support this, the Port Emissions Risk Level (PERIL) classification algorithm has been established as 

the first step. This algorithm assesses the overall severity of ship emissions within a given time frame by 

categorising emission levels into five classes: Very Low, Low, Moderate, High, and Very High. The 

classification is based on statistical comparisons with annual average emissions and their standard 

deviation, thereby offering a consistent, data-driven assessment based on observed distribution patterns 

rather than relying on subjective threshold values. Once these thresholds are defined, the system 

automatically classifies emissions data. If the total emissions are found to exceed the high-risk category, 

the framework proceeds to the second analytical stage, where the contributions of ship type groups to the 

port’s total emissions are examined in greater detail. 

If the total quantified emissions surpass the defined high-risk threshold, the analysis advances to a second 

phase that focuses on identifying the specific contributions of individual ship groups. This involves 

applying the Ship Type Emission Intensity (ST-EI) metric, which compares the average emissions per 

voyage of each ship type against the overall fleet average within a defined time frame, as shown in 

Equation (14). This comparative approach allows for the creation of a ranked emissions contribution scale, 

supporting the prioritisation of certain ship categories for targeted emission reduction measures. 

In the final analytical phase, the system evaluates the potential for emission reduction on a per-vessel basis. 

This is achieved through the calculation of the Emission Optimisation Potential (EOP), which assesses a 

ship’s actual emission performance, expressed as the Ship Emission Intensity (S-EI), relative to a baseline 

reference value for each operational mode, as outlined in Equation (15). If a ship’s S-EI exceeds the 

baseline (EOP > 1), it indicates excess emissions and a higher potential for optimisation; values below 1 

suggest more efficient performance. These baseline values are derived from historical records processed 

in the Module 1. In cases where no previous data exists, such as during a vessel's first recorded port visit, 
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the system relies on the predictive module to estimate emissions based on the ship’s type, configuration, 

and movement data. 

However, not all ships will have the same level of improvement potential. Some vessels may already be 

performing efficiently, leaving minimal room for further optimisation. To ensure fairness in evaluating 

and ranking vessels, the Ship Emissions Performance Indicator (SEPI) is introduced. This composite 

metric combines the SHAPE value (which measures emission efficiency) with the EOP value (indicating 

optimisation potential) to provide a comprehensive performance score, as can be seen in Equation (16). 

SEPI thus facilitates a balanced and prioritised emissions ranking, ensuring that vessels with the greatest 

potential for improvement are highlighted for corrective action. 
 

 
ST-EI = 

Est × Vtot

Vst × Etot 

 (14) 

 
EOP = 

S-EI a

 S-EI b
  (15) 

 
SEPI = SHAPE × EOP (16) 

Where: 

 

ST-EI: Ship Type Emission Intensity – normalised value (dimensionless); 

Est: Total emissions for a specific ship type – in kilograms (kg);  

Vst: Number of voyages for that ship type – dimensionless value  

Etot: Total emissions for all ship types in the period – in kilograms (kg) 

Vtot: Total voyages for all ship types in the period – dimensionless value  

EOP: Emission Optimisation Potential – normalised value (dimensionless) 

S-EI a/b: Ship Emission Intensity actual/baseline – as emissions mass in entire  

voyage per units of work capacity (kg/wcu) 

5.2.5. Module 4: Ship emissions optimisation module 

Since the top-down evaluation system introduced in this research enables data-driven classification of air 

pollution risk in entire port areas, as well as emissions performance assessment for ship types and 

individual vessel, the final module of the PrE-PARE DSS was developed to support targeted operational 

improvement and emissions optimisation actions. This optimisation module, which forms the core of Paper 

4 (currently in preparation) and directly responds to RQ5 by delivering actionable recommendations for 

enhancing port operational efficiency. It functions as a DSS that proposes targeted emission control 

solutions adapted to specific ships, operational modes, and emission scenarios based on quantified and 

evaluated performance data within the observed period. 

The optimisation process is structured into two tiers: a first-tier performance-based optimisation and a 

second-tier intensity-based optimisation. Both tiers operate under a rule-based logic system that integrates 

data from all previous modules, including machine learning-based emissions influence analysis, 

quantification results, and emissions ranking metrics such as SEPI, EOP, and ST-EI. 

The initial phase begins by identifying ships and operational modes with above-average emission 
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indicators, particularly those with an EOP greater than 1. These values indicate operational phases where 

emissions exceed expected baselines. The priority for recommending optimisation actions is initially based 

on the SEPI, which reflects both the overall efficiency, and the extent of operational improvement required. 

The principle is to improve emissions performance at the individual level before escalating to systemic or 

group-level interventions. These performance-based recommendations are directed at the operational level 

and involve targeted strategies to reduce time and engine load in the relevant mode. 

In cases where optimisation based on high EOP values is not sufficient to reduce the total port-level 

emissions to an acceptable range, particularly when the PERIL is classified as High or Very High, the 

system initiates a second-tier optimisation. In this phase, the system considers the average emission 

performance of ship groups using the ST-EI. If the ST-EI value for a group exceeds 1, further optimisation 

recommendations are extended to other vessels within that group, starting with ones having highest SEPI 

values. Here, optimisation is applied specifically to voyage sequences (modes) where emissions are most 

concentrated, either to the ME or AE operations based on their dominant share of total output. This broader 

scope ensures that even if individual performance improvements are insufficient, adjustments based on 

intensity can still bring overall emissions within acceptable thresholds. 

This iterative cycle continues until total emissions for the evaluated period are expected to fall within the 

Moderate PERIL threshold. The optimisation mechanism follows a set of conditional rules. The logic 

governing these optimisation decisions can be formalised as follows in equations (17), (18) and (19): 
 

 IF EOPi,m > 1 ⇒ Recommend {O, R, T} i,m (17) 

 IF ST-EIj > 1 ⇒ Recommend {O, R, T} i∈j  (18) 

 Repeat until PERILt ≤ Moderate (19) 

Where: 

 

EOPi,m: Emission Optimisation Potential of ship i in mode m, 

ST-EIj: the average emissions per voyage for ship type j relative to the reference value, 

{O, R, T}i,m: the set of operational (O), regulatory (R), and technological (T) recommendations relevant 

for ship i and mode m, 

PERILt: the emissions risk classification for time period t. 

The recommendations are based on key influencing parameters identified by the B-MARS predictive 

module. Since this component integrates both technical and operational characteristics of each vessel, it 

specifies the most impactful variables contributing to emissions, which are then used to suggest viable 

emission reduction options.  

However, while B-MARS provides insight into what causes differences, the energy-based bottom-up 

calculations used in the quantification module, offer a complementary view by quantifying the absolute 

contribution of each emission source. Therefore, the optimisation module integrates both perspectives: B-

MARS results identify actionable parameters, while energy-based shares determine emission impact 

potential. These measures are grouped into the following categories, all applicable from a port 

management perspective: 

Operational measures include managing vessel activity through improved berth allocation, synchronised 

tug assistance, and arrival/departure slot optimisation to reduce idling and related emissions, minimised 

turnaround times, zones with reduced approach speed and load optimisation at berth.  

Regulatory actions are aligned with ship emissions metric, scaling, classification and ranking module. 
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They involve emission caps derived from PERIL or ST-EI thresholds, port-level policy instruments, tariff 

schemes for high SHAPE vessels, mandatory shore power use where infrastructure exists, priority berthing 

for low-emission or high-efficiency ships and onboard emission-related data reporting.  

Technological recommendations include provision of alternative fuels, application of available shore 

power infrastructure and energy provided from renewable sources.  

The application of specific measures depends on the emission performance associated with each mode of 

operation. In cruising, the system may recommend speed limits during pilotage or optimised scheduling 

to reduce waiting time. In manoeuvring, solutions such as improved berth traffic management may be 

suggested. For hoteling, enforcement or facilitation of using shore power infrastructure and turnaround 

time reduction could be advised, along with rescheduling or reducing time spent at berth. 

This module ensures that recommendations are neither arbitrary nor generic, but rather tied to measurable 

underperformance as revealed through the model’s metrics. Contained measures are aligned closely with 

the goals of the SEEMP by offering structured strategies that ports can use to support vessels in 

implementing energy efficiency and emission reduction measures from the shore side. The port-based 

recommendations are directly actionable under SEEMP Part III, which mandates ship-specific carbon 

intensity reduction plans. Furthermore, the model can interface with existing port sustainability 

frameworks. For instance, ports such as Los Angeles, Rotterdam, and Singapore already implement Green 

Port Programmes or differentiated port fee schemes based on emission performance or fuel type. By 

integrating outputs from the PrE-PARE DSS, particularly SEPI and EOP scores, into these incentive 

structures, ports can promote cleaner ship operations without requiring vessel-side technological 

overhauls. 

Thus, the optimisation module offers mitigation actions for decision-makers that support regulatory 

alignment and implementation under global standards. 
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6. Output Summary 

While the primary contribution of Paper 1 was to identify the most appropriate methodological approach 

for calculating ship-related emissions and to expose the limitations of existing air pollution inventories in 

port environments, discussed in detail within the Introduction and Literature Review chapters, the outputs 

generated by each segment of the PrE-PARE DSS were presented progressively in subsequent papers. 

Paper 2 provided a comprehensive overview of the technical, temporal, spatial, and operational aspects of 

emissions from all ships that visited the passenger basin of the Port of Split in 2019, as estimated by 

Module 1. An analysis of the same features generated by Module 1, now focused on a specific day, was 

presented in Paper 3. This article also includes the results derived from the predictive component (Module 

2), alongside the detailed implementation of novel metrics and classification techniques applied to the 

datasets from the selected period. As a final sequence, the implementation of corrective operational 

strategies is being explored in Paper 4, which is currently in preparation. 

6.1. Module 1 – Emissions Quantification and Analysis 

The quantification module estimated ship-related emissions by integrating key technical attributes with a 

dataset of 49,540,895 AIS reference points, which had previously been processed to define individual 

vessel trajectories, operational modes, and corresponding EFs. Utilising this bottom-up framework in 

combination with an energy-based method allowed for high-resolution quantification of air pollutants 

emitted by each ship during every port call in 2019. These emission estimates, tied to specific port visits 

and ship characteristics, were stored within the system, enabling the generation of various analytical 

outputs. 

Based on the analysed AIS data, a total of 16,429 port calls were recorded in the Split City Port basin for 

the year 2019. This result was consistent with official port traffic statistics, confirming the accuracy of the 

model in representing ship movements, which are fundamental for calculating emissions. The number of 

port calls detected showed full or high levels of agreement with maritime traffic records for nearly all 

major ship categories: 100% for all Cruise Ships, 98% and 95% for the two categories of Ro-Ro Ferries, 

96% for High Speed Craft, and 94% for Tugs and Fishing Vessels. However, discrepancies were observed 

for Excursion Ships, Pleasure Craft, and Sailing Ships, where reported figures varied significantly across 

different data sources. As a result, the emissions associated with these vessel types may be underestimated 

in the current model. A visual summary of the port call distribution by ship type, derived from the AIS 

dataset used in this study, is presented in Figure 10. 

In all of the analysed vessels, the most frequently installed engine type is the MS D, accounting for 78% 

of all ships. This is followed by HS D engines, present on 22% of vessels, while LS D engines are found 

on just 3%. GTU, STU, and DF engines are installed on fewer than 1% of ships and thus have a negligible 

influence on overall emissions within the study area. Considering the engine configurations and in 

accordance with the EU Sulphur Directive, it is assumed that all vessels operate on MDO or MGO with a 

sulphur content limit of 0.1% throughout their entire stay in port. 
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Figure 10. Share of visits to the Port of Split – passenger (City port) basin in 2019 based on AIS data, as illustrated 

in Paper 2. 

It is important to highlight that 2019 was designated as the baseline year for this research, and the datasets 

from this period were used to establish reference values and operational benchmarks. To support validation 

and comparative analysis, an additional 15,930,840 AIS reference points, along with the corresponding 

technical specifications of ships visiting the port during 2021, 2022, and 2023, were also collected. These 

datasets were processed using Module 1 following the same methodology, enabling consistent integration 

and analysis throughout the whole system. 

As Module 1 was employed in Paper 2 to generate emission-related results on an annual scale, and in Paper 

3 to analyse emissions for a specific day, this section of the thesis is structured accordingly, with two 

corresponding subsections. 

6.1.1. Annual Emissions Estimation and Analysis of Technical, Temporal, 

Spatial, and Operational Aspects 

6.1.1.1. Quantification of Ship Emissions on Annual Basis 

Based on the processing logic and methodological framework elaborated in the Research Summery section 

of this thesis, the quantification module produced a high-resolution emissions inventory for all vessels 

operating within the City port basin of the Port of Split during 2019. Emissions were calculated by 

aggregating pollutant quantities across defined voyage trajectories, first for individual ships, then grouped 

by vessel type, and finally summed to reflect overall port emissions. 

The annual totals for both GHGs and APSs, presented in Table 2, are quantified by ship category and 

pollutant type. While the number of port calls was a strong indicator of emissions for Ro-Ro Ferries and 

High Speed Craft, noticeable deviations occurred for other ship groups. This disparity is largely attributed 

to variations in engine configuration and operational energy demands across vessel types. 
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Table 2. Annual emissions quantified by the model for the Port of Split – City port basin in 2019 expressed in mt., 

as shown in Paper 2. 

Ship Type 
GHG APS 

CO2 CH4 SOx NOx PM10 PM2.5 NMVOC CO 

Ro-Ro Ferry 19,734.524 0.345 11.694 297.449 6.484 5.966 16.857 12.132 

High Speed Craft 5962.247 0.105 3.533 85.349 1.945 1.789 5.475 5.037 

Large Ro-Ro Ferry  4697.735 0.088 2.782 86.684 1.619 1.490 4.085 0.698 

Large Cruise Ships 4276.095 0.080 2.532 77.546 1.471 1.354 3.617 0.772 

Medium Cruise Ships 4160.025 0.077 2.464 75.264 1.427 1.313 3.509 0.821 

Excursion Ships 1431.938 0.033 0.849 26.338 0.526 0.484 1.870 0.836 

Small Cruise Ships 1156.656 0.020 0.685 16.751 0.378 0.348 0.899 0.838 

Pleasure Craft 525.652 0.013 0.312 11.866 0.203 0.187 0.777 0.173 

Fishing 351.700 0.007 0.208 4.610 0.117 0.108 0.350 0.331 

Tug 135.243 0.003 0.080 1.770 0.049 0.045 0.167 0.141 

Sailing 30.074 0.001 0.018 0.739 0.011 0.010 0.038 0.007 

Totals 42462 1 25 684 14 13 38 22 

6.1.1.2. Operating Modes, Spatial and Temporal Distribution of Emissions 

The emission inventory developed through Module 1 allowed for the segmentation of pollution by 

operational mode, offering a detailed understanding of when and where emissions are most pronounced. 

On an annual basis, the model indicated that 59% of emissions were released during cruising, 8% during 

manoeuvring, and 33% during hoteling. However, these proportions vary significantly across ship types, 

as illustrated in Figure 11. 

 
Figure 11. Proportional distribution of annual emissions by operational mode by ship type, as presented in Paper 2. 

This insight is crucial for developing emission mitigation strategies, especially considering that APSs 

released near urban areas pose a greater risk to local air quality. To visualise the emission dispersion 

patterns of various ship types, the model was applied to generate a high-resolution spatial distribution of 

emissions according to operational activities. This annual overview, illustrated in Figure 12, highlights that 

approximately 59% of emissions associated with cruising (red) occurred within a 13 nautical mile (NM) 

radius from the port, whereas the remaining 41%, originating from manoeuvring (green) and hoteling 

(blue) operations, were predominantly concentrated within just 0.5 NM of the city centre. 
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Figure 12. Spatial distribution of emissions by activity, shown in Paper 2 (cruising, manoeuvring, hoteling), 

illustrating distance of dispersion from city centre based on annual model output. 

To further illustrate the emission hotspots by mode and ship type, detailed spatial maps were generated for 

large Cruise Ships and Ro-Ro Ferries. These are presented in Figure 13, which displays emission totals 

per port call for the month of October, colour-coded by magnitude. The map clearly shows a spatial 

divergence in emission patterns: large Cruise Ships concentrated the majority of their emissions near the 

berth during hoteling, whereas Ro-Ro Ferries primarily emitted during their approach and departure 

phases, consistent with cruising mode. The legend located in the upper-right section of the map indicates 

that large Cruise Ships emitted between 35 and 45 mt of air pollutants during hoteling operations, whereas 

Ro-Ro Ferries generated approximately 1.2 mt while operating in cruising mode. 

  
(a) (b) 

Figure 13. High-resolution spatial representation of emissions per port call within a 1 NM radius from peak emission 

points: (a) Large Cruise Ships (hoteling dominant), (b) Ro-Ro Ferries (cruising dominant). Originally presented in 

Paper 2. 

The temporal distribution of emissions reflects the seasonality of tourism-driven maritime traffic. As 

shown in Figure 14, emissions peak in the summer months, particularly in July, which recorded GHG and 

APS levels nearly three times higher than those in winter months such as January or February. This 

seasonal surge highlights the need for targeted emission reduction strategies during peak periods. By 

distinguishing between high and low traffic seasons, port authorities can implement demand-responsive 

environmental controls. The alignment of GHG and APS peaks underscores the interrelated nature of 
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emissions in a predominantly passenger-based port environment. 

 
Figure 14. Temporal distribution of emission totals based on monthly fluctuations and the annual average for 2019 

in mt, as illustrated in Paper 2.  

6.1.2. Daily Emission Analysis and Overview of Technical, Temporal, 

Spatial, and Operational Aspects  

Although Module 1 provided the capability to estimate emissions on a ship-by-ship basis and generate a 

comprehensive inventory encompassing various dimensions of air pollution, the analysis primarily focused 

on an annual timescale. As highlighted in Paper 2, emission levels and their distribution across different 

vessel types are not only influenced by technical characteristics of fleet and operating modes but also vary 

significantly with time. These temporal dynamics can considerably alter the relative contribution of 

different ship types to overall emissions. Consequently, the development of effective emission control 

strategies requires consideration of all aspects, which implies processing extensive datasets and analysing 

complex interactions among multiple parameters, what can be both computationally intensive and time-

consuming. 

Hence, the implementation of a scalable framework based on emissions inventory analysis can provide a 

more transparent and effective depiction of the critical characteristics of ship-sourced air pollution in port 

areas. Such a system offers a structured and consistent foundation for managing air quality in port 

communities, as demonstrated in the findings presented in Paper 3. To facilitate more informed decision-

making and enhanced risk assessment, Module 1 was again employed in the aforementioned article to 

analyse emissions over shorter time intervals. This approach was adopted due to the identified correlation 

between elevated emission levels and peak seasonal traffic. Consequently, the analysis was expanded to 

include daily fluctuations, with a particular focus on high-traffic periods during the baseline year of 2019. 

Accordingly, daily total emissions for the entire year were visualised using Module 1, as illustrated by the 

blue line in Figure 15. This graph not only reinforces the seasonal trends observed in the previous annual 

analysis but also reveals significant intra-month variability, particularly during the summer season. The 

deviations are especially striking when compared to the calculated annual average of 120,164 kg, marked 

by the yellow line. Daily emissions frequently exceeded this benchmark, with some days registering more 

than double the average output. Given this observed discrepancy, a detailed case analysis was undertaken 

for a representative peak day in July, the month identified as having the most pronounced emission spikes. 
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Figure 15. Distribution of daily emission totals and annual average expressed in kg, released by ships calling at the 

Port of Split passenger basin in 2019, as presented in Paper 3. 

Table 3, thus, presents the emissions estimated by the quantification and analysis module for the passenger 

basin of the Port of Split on 2 July 2019, identified as the day with the highest emission levels during the 

selected month. The results reveal that total ship-generated emissions on this particular day exceeded the 

annual daily average by more than 2.5 times, underscoring the acute environmental pressure such short-

term peaks can exert on densely populated urban areas. Notably, Large Cruise Ships alone accounted for 

approximately 37% of the emissions on that day, nearly double the contribution of Ro-Ro Ferries, the 

second largest source, and only slightly less than the combined emissions of all other ship types. This 

deviation from the annual distribution highlights the temporal variability of emission patterns and 

reinforces the importance of short-interval analyses for accurate impact assessment. 

Table 3. Emission of GHGs, APS and ship totals in kg by different ship types for the Port of Split 

passenger basin on 2 July 2019, quantified by the first module in Paper 3. 

By correlating the proportion of emissions generated by individual ship types with the number of their 

respective voyages on 2 July 2019 as the most emission-intensive day, a pronounced imbalance becomes 

evident. As illustrated in Figure 16, the comparative analysis reveals that High Speed Crafts, although 

responsible for the highest number of port calls (37%), contributed just 6% to the day’s total emissions. In 

contrast, Large Cruise Ships accounted for only 2% of voyages but generated an overwhelming 37% of 
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       GHG APS SHIP TYPE 

TOTALS CO2 CH4 SOx NOx PM10 PM2.5 NMVOC CO 

Large Cruise Ships 116,161.249 2.133 68.801 2174.880 39.936 36.741 94.975 9.674 118,588.391 

Ro-Ro Ferry 63,221.461 1.102 37.466 885.589 20.553 18.908 54.663 48.716 64,288.459 

Large Ro-Ro Ferry 39,378.559 0.758 23.300 733.636 13.703 12.607 36.573 3.364 40,202.501 

Small Cruise Ships 35,969.292 0.642 21.315 655.656 12.220 11.242 27.581 5.751 36,703.699 

Medium Cruise Ships 31,222.711 0.591 18.481 582.766 10.817 9.951 26.038 2.642 31,873.997 

High Speed Crafts 19,380.975 0.346 11.486 262.921 6.312 5.807 17.733 17.273 19,702.854 

Excursion Ships 21,46.156 0.051 1.272 35.847 0.783 0.720 2.849 1.456 2,189.134 

Tug 14,60.308 0.028 0.865 18.785 0.480 0.442 1.324 1.413 1,483.644 

Pleasure Craft 1,349.716 0.047 0.800 26.445 0.584 0.537 2.797 0.616 1,381.542 

Fishing 691.295 0.021 0.410 9.374 0.272 0.250 1.081 0.765 703.468 

Sailing 94.409 0.002 0.056 2.026 0.035 0.032 0.117 0.038 96.715 

EMISSION TYPE 

TOTALS 
311076.132 5.722 184.252 5387.925 105.694 97.239 265.730 91.709 317214.402 
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emissions.  

 
Figure 16. Share of emissions (orange) and voyages (blue) between ship types relevant in the research area on 2 July 

2019, provided in Paper 3. 

This disproportionate distribution highlights the importance of differentiating emission sources not solely 

based on frequency of operation but also by assessing underlying operational and technical characteristics. 

This case, in itself, illustrates the uneven contribution to total emissions and underscores the importance 

of conducting a detailed investigation into the operational and technical factors that lead to elevated levels 

of shipboard exhaust production. 

In Paper 3, the emission inventory created by Module 1 was further used to analyse operational and spatial 

patterns, now considering a different period. Specifically, the operational mode breakdown of emissions 

on 2 July showed a significant shift from annual averages. Emissions were distributed as follows: 43% 

during cruising, 12% while manoeuvring, and 46% when hoteling. These variations reflect a unique daily 

operational dynamic and highlight the influence of voyage profiles on emission intensity. Figure 17 clearly 

demonstrates that all categories of Cruise Ships emitted the majority of their pollutants while hoteling. In 

contrast, Fishing and Pleasure Craft produced the most emissions during manoeuvring, while all other 

vessel types primarily contributed during the cruising phase. 
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Figure17. Distribution of emissions produced in operating modes for each ship type that visited the passenger basin 

of Port of Split on 2 July 2019, as presented in Paper 3. 

Considering that each operating mode occurs in geographically distinct zones within the port area, a high-

resolution spatial emissions map was generated. Figure 18 presents the dispersion of air pollutants 

categorised by operating phase. The analysis revealed that nearly all emissions were released within a 12 

NM radius of Split city centre. Of particular concern is the concentration of hoteling and manoeuvring 

emissions, constituting 58% of the total, within just 0.5 NM of the urban area. This spatial concentration 

of exhaust near populated zones is especially critical for air pollutants with strong local health effects, such 

as NOx, PM, and SOx. 

 
Figure 18. Spatial distribution map of ship emissions based on operating modes developed as a part of Paper 3. The 

reference points shown represent the individual voyages of each ship that visited the passenger basin of the Port of 

Split on 2 July 2019 and contain a complete set of emission-related data. 

The high-density emission mapped in Paper 3 provided a crucial visual and analytical tool for 

understanding real-time pollution patterns. However, as observed in Figure 17, variations in ship operation 

and composition across time periods directly affect emission outcomes. This emphasises the limitations of 

relying solely on historic data overview of one period. To address this, predictive modelling, enabled by 

machine learning algorithms introduced in subsequent modules, must be integrated to simulate emissions 

under varying operational scenarios. Such an approach ensures the development of more adaptive and 

forward-looking mitigation strategies grounded in empirical evidence and capable of supporting dynamic 

port operations. 

6.2. Module 2 – Emissions Prediction Based on MARS Approach 

By relying on the comprehensive emission-related database and analysis of operational profiles derived 

from fisrt component, Module 2 of the PrE-PARE DSS applied predictive analytics to estimate exhaust 

gas emissions from ships using machine learning techniques. This module was implemented and evaluated 

in Paper 3. To capture the complex, nonlinear relationships between multiple predictors and emission 

outputs, four variants of MARS models were deployed: standard MARS and B-MARS, each with and 

without logarithmic normalisation. These models were trained using the complete 2019 dataset, which 

included technical details and over 49 million AIS reference points covering ship activities in the Port of 

Split area. 
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Model performance was evaluated through ten-fold cross-validation to ensure robust generalisation. Each 

fold randomly assigned 90% of data for training and 10% for testing, rotating through all iterations. For 

each run, RMSE, MAE, and R² were computed and compared for all operational modes (cruising, 

manoeuvring, hoteling) and ship categories. Log-transformed models generally exhibited superior 

performance on skewed data, particularly in Cruise Ship datasets with large emission ranges. However, in 

scenarios where emissions were more evenly distributed, raw data models outperformed. Notably, the non-

logarithmic B-MARS variant delivered the lowest RMSE and MAE in multiple contexts, such as 

manoeuvring operations of Ro-Ro Ferries (MAE: 17,459 g), highlighting its accuracy in modelling 

balanced emission datasets. 

Given its consistent performance across ship types and operational conditions, the B-MARS model without 

log transformation was selected as the predictive algorithm for Module 2. To further assess its accuracy, 

extended validation was conducted using unseen AIS and technical datasets from diverse periods of 2021, 

2022, and 2023, encompassing an additional 15,930,840 reference points. The predictive outputs were 

compared against actual emissions calculated for Ro-Ro Ferries and Cruise Ships, selected as 

representative case studies due to their contribution of over 90% of the total recorded emissions. As 

illustrated in Figure 19, each scatter plot (panels a for Ro-Ro Ferries, b for Cruise Ships) shows predicted 

emission values (blue dots) alongside actual emissions (red dashed line) for all three operational modes. 

The alignment of predicted values with the reference trendlines demonstrates the model’s ability to 

perform accurately beyond its training set. The strongest agreement was found in the cruising and hoteling 

modes, with only minor deviations observed in manoeuvring operations. 

Overall, the B-MARS model trained on historical data successfully captured underlying patterns in ship 

behaviour and operational emissions, confirming its suitability for future forecasting scenarios and 

emissions trend analysis. 

  

(a) (b) 

Figure 19. Comparison of ship emissions based on real data and values predicted by non-log B-MARS module for 

Ro-Ro Ferries (a) and Cruise Ships (b) in C – Cruising, M – Manoeuvring, and H – Hoteling modes, from top to 
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bottom, as shown in Paper 3. 

6.3. Module 3 – Ship Emissions Metric, Scaling, Classification, 

and Ranking Module 

Although the second module generated accurate predictions of ship-sourced air pollutants, even under 

previously unseen operational scenarios, its outputs remained inherently tied to the specific temporal and 

spatial context of the baseline dataset, as defined by the emission estimations in Module 1. The findings 

from Papers 2 and 3 confirmed that emissions vary considerably depending on timeframes, vessel 

composition, and activity patterns, which limits the direct comparability of results across periods or ports. 

Moreover, the iterative process of producing, analysing, and validating these results is both 

computationally intensive and requires expert interpretation. 

To overcome these challenges and facilitate efficient and more scalable evaluation of air pollution risks in 

ports, this research introduced a standardised system for metric-based analysis, integrated within the third 

module of the PrE-PARE DSS framework. Based on the analytical outputs produced in previous 

components, this module implements novel classification techniques, ship performance metrics, and 

scaling algorithms to provide a consistent, interpretable structure for ranking ship emissions and 

identifying optimisation opportunities. This approach directly responds to the needs outlined in the earlier 

studies, offering a more efficient pathway for ongoing emissions assessment, port-level risk classification, 

and targeted policy or operational interventions. 

6.3.1. Standardised and Interpretable Assessment of Ship Emissions Efficiency 

and Impact through Novel Metrics and Scaling Frameworks 

To establish a universally applicable and transparent framework for evaluating the emissions efficiency of 

individual vessels, this research introduced and implemented the VAPOR as a core metric within the third 

module of the PrE-PARE DSS system. Based on the emission outputs estimated in Module 1, VAPOR 

serves as a quantitative measure of the average hourly emissions per unit of working capacity for each 

ship, categorised by operational mode (cruising, manoeuvring, hoteling). 

To derive standardised baseline values, the complete dataset composed of technical details and activities 

of all ships recorded during the 2019 as a baseline year was processed to calculate baseline VAPOR-b 

values (baseline) for each predefined ship category. These reference values represent emissions efficiency 

under expected conditions and enable subsequent benchmarking. In this context, working capacity was 

defined differently depending on the vessel type: for Cruise Ships, High Speed Crafts, Excursion Ship, 

Pleasure Craft, and Sailing Ships, passenger capacity was used; Ro-Ro Ferries included both passenger 

and vehicle capacity; Tugboats were evaluated using bollard pull; and Fishing Vessels were assessed based 

on cargo volume. 

To establish a consistent reference framework, full working capacity was used as a fixed input parameter, 

irrespective of real-time utilisation, allowing for static comparison across ship types and visits. For port 

calls, where vessels typically load and unload passengers or cargo in both directions, the defined capacities 

were doubled to reflect total potential throughput. This adjustment did not apply to tugs or Fishing Vessels, 

as their work functions follow different operational logic. 

The resulting VAPOR-b values for APSs, including SOₓ, NOₓ, PM₁₀, PM₂.₅, NMVOC, and CO, are 

visualised in Figure 20 and highlight substantial variability across vessel classes and operational modes. 

Notably, Pleasure Craft demonstrated the highest emissions per unit of capacity during cruising, exceeding 

760 g/h, a consequence of their small capacity paired with high engine demands. Contrarily, Ro-Ro Ferries, 

despite being among the largest total contributors to annual emissions exhibited the lowest specific rates 

due to their high capacity and relatively efficient operation. Sailing Ships also recorded high values (640 
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g/h), reflecting the conservative assumption of continuous engine operation, and representing a worst-case 

scenario within this research. 

By standardising emission outputs against fixed working capacities and across discrete operational modes, 

the VAPOR framework provides a scalable foundation for the comparative analysis of emission efficiency. 

This lays the groundwork for the development of advanced classification, optimisation, and ranking 

methodologies in subsequent stages of the third module. 

 
Figure 20. Overview of hourly rate of APS production in g per work capacity (APS VAPOR-b) in each mode (C – 

Cruising, M – Manoeuvring and H - Hoteling) across all ship types calling at Port of Split in baseline year 2019. 

Following the establishment of VAPOR-b for each ship category and operational mode, a comparative 

scaling process was implemented. This involved calculating actual VAPOR (VAPOR-c) values for vessels 

calling at the Port of Split on 2 July 2019, ensuring consistency in the application of work capacity 

definitions between both baseline and actual cases. The comparison of VAPOR-c to VAPOR-b enabled 

the derivation of the SHAPE metric, a dimensionless indicator reflecting each vessel’s emission efficiency 

relative to its expected performance. The SHAPE metric provides a clear interpretation: values above 1 

signify lower emission efficiency, indicating a higher emission output per unit of work capacity, while 

values below 1 suggest that a vessel performed more efficiently than the average for its class. This process 

allows for a straightforward and objective benchmarking of individual ship performance. 

To demonstrate the applicability of this metric, one large Cruise Ship (L.C.S. 1), identified as a major 

contributor to emissions on the analysed day, was used as a representative example. The left-hand panel 

of Figure 21 displays the actual (calculated) hourly emissions (VAPOR-c) compared with the 

corresponding reference values (VAPOR-b) in cruising, hoteling, and manoeuvring modes. For instance, 

during the hoteling phase, L.C.S. 1 on hourly basis emitted approximately 13 grams of air pollutants per 

unit of working capacity more than similar ships in its category. The right-hand panel presents the 

calculated SHAPE values, with each bar representing performance in a specific operational mode, and the 

dashed yellow line marking the standard reference point (SHAPE = 1). It is evident that in all three modes, 

L.C.S. 1 operated less efficiently than its peer average. 
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(a) (b) 

Figure 21. (a) Comparison between recorded VAPOR-c and reference VAPOR-b values across different operational 

modes (C – Cruising, M – Manoeuvring and H – Hoteling); (b) Normalised SHAPE values for Large Cruise Ship 1. 

As depicted in Paper 3, the bars represent the calculated SHAPE for each mode, while the yellow dashed line marks 

the reference efficiency (SHAPE = 1), indicating that Large Cruise ship 1 performed less efficiently across all modes. 

This example illustrates the practical value of the SHAPE metric. When used in conjunction with the 

VAPOR framework, it delivers a robust, transparent means of quantifying ship-level air pollution 

performance. Because the methodology relies solely on operational and emission data that are typically 

accessible, the calculation is both scalable and reproducible. Its intuitive visualisation, particularly through 

the use of normalised benchmarks, allows users, including non-experts, to interpret performance quickly 

and accurately. As a result, this dual-metric system not only supports more precise emissions monitoring 

but also offers a universal foundation for performance tracking at both local and international levels, 

aligning emission assessment with practical decision-making in port and shipping governance. 

To supplement the technically focused emission metrics with a format that is more accessible to a broader 

port community, the SEIL was applied for the selected day of analysis. This user-friendly indicator 

compares the total emissions produced by each vessel during a single port call against those of a 

standardised reference, termed the “generic ship”. The reference value is calculated by dividing the total 

emissions by the total number of voyages recorded on that day, creating a consistent benchmark for 

comparative assessment. 

As shown in Figure 22, SEIL offers a straightforward visual ranking of individual vessels, presenting 

emissions per voyage in relation to the average. Ships with a SEIL value above one are identified as higher-

than-average emitters, drawing attention to those with a greater environmental burden. This clear format 

supports transparency and can serve as a communication tool for port authorities, stakeholders, and the 

public when evaluating and discussing ship-based air pollution. 
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Figure 22. SEIL values for vessels that visited the port on 2 July 2019. The SEIL indicator represents the amount of 

emissions produced per port visit in comparison with a standardised baseline, referred to as the "generic ship" 

(illustrated by the dashed line with a value of 1). Significantly, Large Cruise Ship 1 recorded emission levels 

exceeding the average by more than a factor of 17. In contrast, the majority of vessels, including Ro-Ro Ferries and 

High Speed Craft, remained at or below this benchmark. This figure highlights the considerable variability in emission 

impact among individual vessels. 

The SEIL results underscore the notable emissions disparities among vessel types. Most significantly, 

Large Cruise Ship 1 released over 17 times the pollutants of the generic ship during its port visit, illustrating 

its substantial environmental footprint. Although Ro-Ro Ferries collectively represent the second largest 

source of emissions on analysed day, and first on annual basis, the emissions from a typical Ro-Ro Ferry 

would require roughly 23 separate port calls to match the impact of a single visit by Large Cruise Ship 1. 

These findings emphasise the need for tailored emission mitigation strategies that reflect the operational 

characteristics and environmental influence of different vessel types. 

6.3.2. Classification of Air Pollution Risk and Ranking of Ships by Emissions 

Intensity, Optimisation Potential, and Overall Performance 

To enable effective assessment and regulation of emissions in port environments, a structured top-down 

classification system was developed. This system evaluates the overall risk of air pollution, emission 

intensity by ship type, and individual vessel performance-based on data generated through the first module. 

As the initial step, the PERIL classification algorithm was applied to daily emission totals from 2019 as a 

reference year. Based on statistical distribution, this method categorises each day into one of five levels 

(Very Low, Low, Moderate, High, and Very High), by using the mean and standard deviation of the annual 

emission values as reference points. Figure 23 presents this categorisation, demonstrating that only a 

limited number of days fell into the highest risk categories, with Very High and High classifications 

accounting for just 13 and 50 days respectively. These days primarily occurred between April and 

November, confirming a seasonal pattern. 
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Figure 23. The PERIL classification algorithm applied on daily ship emissions quantified by the Module 1 for the 

baseline 2019 in are relevant to Port of Split, derived from Paper 3.  

The day with the highest recorded emissions, 2 July 2019, was selected for detailed analysis, as it reached 

a total of 317,214 kilograms, exceeding the annual average by more than 2.6 standard deviations, thereby 

placing it within the Very High-risk category according to the PERIL classification.  

In the second phase of analysis, the Ship Type Emission Intensity (ST-EI) method was used to assess 

which vessel types were most responsible for this output. As Figure 24 shows, Large Cruise Ships 

exhibited the highest pollutant intensity per voyage, prompting additional scrutiny of individual ships 

within this category. 

 
Figure 24. The Ship Type Emission Intensity (ST-EI) method for measuring the degree of air pollutants released in 

all ship types compared to temporal total ships emissions per all voyages, applied for APSs on 2 July 2019, and 

Present originally in Paper 3.  

The third and final step involved calculating the EOP for specific vessels. This was achieved by comparing 

the actual emissions per unit of work capacity over the full voyage (S-EI actual) with each ship’s own 

historical baseline (S-EI baseline). Unlike the VAPOR metric, which standardises emissions on an hourly 
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basis, the S-EI metric captures emissions for an entire port visit, taking into account variations in 

operational time and pattern. It therefore allows intra-vessel assessment rather than comparison across 

different ships. 

Figure 25 illustrates this analysis for two Large Cruise Ships. The results show that Ship 2 operated more 

efficiently across all phases, while Ship 1 produced 20 % more emissions during hoteling and 5 % more 

during manoeuvring compared to its historical performance. These findings demonstrate where targeted 

improvements could be made. 

 
Figure 25. EOP results for air pollutant substances (APS) from Large Cruise Ship 1 and 2, expressed as percentages 

in different modes (C – Cruising, M – Manoeuvring and H – Hoteling), as presented in Paper 3. Large Cruise Ship 2 

exhibited superior operational efficiency across all phases of the voyage, whereas Large Cruise Ship 1 displayed 

significant potential for emission reduction, particularly during hoteling and manoeuvring, where its outputs 

surpassed standard baseline levels. 

To rank ships fairly, the EOP scores were combined with the previously established SHAPE metric to 

generate a SEPI. This composite score accounts for both relative emissions efficiency and optimisation 

potential. Table 4 presents the top ten ships ranked by ST-EI and SEPI. This multilayered classification 

system supports informed emissions management by identifying both the most impactful vessel types and 

the individual ships with the greatest potential for improvement. 

Table 4. Ranking of the top ten ships in the Port of Split on 2 July 2019, based first on the ST-EI, and SEPI 

indicators for the entire voyage, including the SHAPE and EOP values for each operating mode (C – Cruising, M – 

Manoeuvring and H – Hoteling). 
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6.4. Module 4 – Optimisation Modelling and Application of 

Emission Mitigation Measures 

To begin the emissions optimisation process within the PrE-PARE DSS framework, the B-MARS machine 

learning module was first utilised to identify the key predictors contributing to emission production by 

different ship types and operational modes for all ships in database. Since on 2 July 2019., six of the ten 

top-ranking ships based on SEPI scores were either Cruise Ships or Ro-Ro ferries, the emission-

influencing factors for mentioned groups were analysed and visualised in Figure 26 for cruising, 

manoeuvring, and hoteling modes from top to bottom. These visualisations illustrate how different 

technical and operational parameters affect emissions from various ship types and voyage phases.  
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(a) (b) 

Figure 26. Comparison of emission-influencing factors generated by the B-MARS machine leaning module based 

on technical and operational data for Ro-Ro Ferries (a) and Cruise Ships (b) in C – Cruising, M – Manoeuvring and 

H – Hoteling modes placed from top to bottom. 

For both ship types and all three modes, activity duration (Time) and AE power consistently emerged as 

main or one of the most important emission-influencing factors. This is largely due to their variability 

among individual vessels within each group and their continuous influence on emissions, unlike main ME 

power which fluctuates with changes in vessel speed and voyage distance. Therefore, the auxiliary power, 

along with the duration of operation, were identified as crucial parameters in exhaust gas production for 

Cruise Ships in all modes, particularly during hoteling. For Ro-Ro Ferries, additional variables, such as 

ME power, vessel speed, and GT also proved to be the significant contributors to exhaust production, 

especially during cruising and manoeuvring. It can be noted that the power of the ME appeared as a 

relevant aspect for Ro-Ro Ferries even during hoteling, although mentioned system is not active while at 

berth. This can be attributed to variations among individual vessels within the same category and the 

interdependence between ME and AE design parameters, where a higher ME capacity often coincides with 

a more powerful AE system. 

Although the identified features clearly contribute to ship-based emissions, several of them, such as 
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installed engine power or vessel dimensions, represent fixed technical characteristics and cannot be 

directly influenced, particularly from the port perspective. These attributes help define a ship’s emission 

profile but do not actively dictate the rate of exhaust output in the way operational parameters do.  

Consequently, only activity duration and engine load can be directly influenced by applying targeted 

operational, regulatory or technological measures suggested by the model to finally mitigate emissions. 

These two emission-influencing factors serve as control variables connected to a range of available 

measures (e.g. berth scheduling, tariffs, or speed regulation), which the model uses to recommend 

appropriate adjustments. By focusing on these modifiable aspects, the optimisation module, when 

combined with quantified and evaluated emission-related data, enables effective and scalable pollution 

reduction at both ship and port levels.  

Therefore, the results generated by the machine learning module were used in a first-tier optimisation 

process, where performance-based optimisation was applied, prioritising ships with the highest SEPI 

scores and EOP values for each mode within a specific voyage on stated day. However, the Port of Split, 

used as a case study, lacks infrastructure for shore power and port-specific emission regulations, so only a 

limited range of corrective actions could be considered. For Cruise Ships like Large Cruise Ship 1, the 

model proposed speed reduction during pilotage and improving coordination during manoeuvring and 

mooring operations to limit engine loads and time. While alternative fuels, application of abatement 

technologies, reduced energy consumption of secondary consumers, or usage of shore power could further 

reduce emissions, they were not viable at the time of analysis due to local constraints. Thus, in the hoteling 

phase, available mitigation measures were limited to shortening berth duration or rescheduling calls. 

Similarly, for ships such as Ro-Ro Ferry 9, the model suggested turnaround optimisation and scheduling, 

resulting in reduced time and engine loads during cruising, manoeuvring, and hoteling. Collectively, these 

actions led to a total emissions reduction of nearly 28%. 

Despite this significant drop, the PERIL was only reclassified from Very High to High, prompting the 

intensity-based optimisation as a second-tier optimisation phase. In this stage, corrective measures were 

first directed toward ships within groups with the highest ST-EI metrics. Inside these groups, the logic then 

prioritised ships having the highest SEPI scores, focusing on voyage segments (modes) with dominant 

emission shares and targeting either the ME or AE depending on their relative contribution to overall air 

pollution in specific activity. To support this process, quantified emissions data derived from the Module 

1 and evaluated by the Module 3 where integrated inside optimisation module extending the B-MARS 

analysis of emission-influencing factors. For instance, the distribution of total emissions in operational 

modes for Large Cruise Ship 1 on 2nd July 2019 was 23% for cruising, 11% for manoeuvring, and 66% 

for hoteling. The propulsion system of this ship accounted for 64% of emissions during cruising, while the 

auxiliary system was responsible for 89% and 100% of emissions during manoeuvring and hoteling, 

respectively. Although Large Ro-Ro Ferry 2 on the same date exhibited comparable ME/AE emission 

shares to Large Cruise Ship 1, the proportions between modes differed significantly with 74% of emissions 

occurring during cruising, 9% while manoeuvring, and 18% in hoteling. Based on these distributions, 

engine-mode combinations were targeted for further optimisation, using measures that correspond with 

ME or AE operations. Following the application of interventions based on operational performance and 

emission intensity, total emissions on the analysed day were reduced by 55%, leading to a PERIL 

reclassification from Very High to Moderate.  

This outcome confirms the importance of combining both optimisation strategies to achieve effective air 

pollution mitigation during peak emission periods. In conclusion, the optimisation module completes the 

PrE-PARE DSS cycle by establishing a feedback mechanism where metric system is used as an indicator 

for data-driven interventions until the system stabilises under an acceptable PERIL level. By integrating 

predictive analytics with performance indicators and rule-based logic, the module proposes relevant and 

feasible measures for ship emissions control in port areas. 
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CHAPTER 4 

7. Discussion 

7.1. Progressive Development and Integration of a Modular 

Decision Support Framework for Ship Emissions 

Management 

The research presented in this doctoral thesis introduces a comprehensive and modular decision support 

system, PrE-PARE DSS, designed to facilitate the analysis, prediction, evaluation, and mitigation of ship-

sourced air pollution in port environments. Through the development and sequential integration of four 

analytical modules, the system was progressively expanded to address increasingly complex aspects of 

maritime emissions management. 

Paper 1 laid the conceptual foundation for this work by applying a systematic review methodology to 

critically evaluate existing practices in ship emissions estimation. This analysis provided two essential 

outcomes. Firstly, it identified the most applicable and precise methodologies, such as the bottom-up 

energy-based approach, as the most suitable for localised port environments. Secondly, it highlighted the 

technical and operational datasets required to quantify emissions with spatial and temporal accuracy, 

including AIS records, ship characteristics, and engine parameters. Moreover, the review exposed 

significant gaps in traditional inventory based approaches, such as their limited temporal resolution, 

reliance on assumptions rather than actual movement data, and inadequate treatment of ship type 

variability. These limitations underscored the need for a more dynamic and data-rich system, informing 

the design requirements for the analytical framework introduced in subsequent papers. 

Module 1, initially introduced in Paper 2 and later reused in Paper 3, serves as the foundational element of 

the PrE-PARE DSS. This component enables high-resolution quantification of emissions at the level of 

individual port calls using processed AIS data and technical specifications of ships. Its ability to produce 

structured, voyage-specific exhaust profiles underpins the subsequent analytical and predictive operations 

across the system. 

Paper 3 introduced Modules 2 and 3, building on the datasets generated by Module 1. Module 2 employed 

machine learning, specifically a B-MARS model, to forecast emissions for unseen scenarios, thus 

extending the applicability of the system beyond observed data. Module 3 introduced a suite of innovative 

metric-based methodologies, such as VAPOR, SHAPE, SEIL, PERIL, ST-EI, EOP, and SEPI, that enabled 

the standardised interpretation, classification, and ranking of ship emissions performance. This addressed 

key limitations of traditional regulatory metrics by accounting for mode-specific behaviour, operational 

conditions, and non-CO₂ air pollutants. These novel approaches facilitated transparency, comparability, 

and stakeholder engagement in emissions evaluation. 

Module 4, developed and presented in Paper 4 (currently under preparation), concludes the system by 

enabling targeted emissions reduction. Using results from the B-MARS predictive analysis, this module 

identifies key operational and technical predictors of emissions and applies a two-tiered optimisation 

framework. The first-tier addresses ships with the highest emissions performance scores, while the second 

focuses on the most impactful ship types and voyage segments. The integration of quantified, evaluated, 

and ranked emissions data within an optimisation logic enables tailored recommendations for control 

measures. Although infrastructural limitations constrained the feasible interventions in the case study of 

the Port of Split, substantial reductions in overall emissions (up to 55%) were demonstrated, showcasing 
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the practical value of the approach. 

Collectively, the four modules function as a harmonised system that provides detailed insights and 

actionable outputs across multiple levels, from ship-level operational behaviour to port-wide risk 

assessments. The modular architecture ensures the adaptability of the system to diverse port environments 

and regulatory frameworks. It also supports ongoing development, such as the incorporation of additional 

emissions factors or integration with external monitoring systems. 

By progressively building the PrE-PARE DSS and validating each of its modules through real-world 

application and peer-reviewed dissemination, this thesis contributes a flexible, scalable, and practical 

framework for maritime air pollution management. The work aligns with the evolving environmental 

imperatives in shipping and provides a structured foundation for evidence-based, data-driven interventions 

in port sustainability practices. 

The cumulative results of this research confirmed the initial hypothesis by demonstrating that machine 

learning techniques applied to ship activity data, when combined with a targeted optimisation algorithm, 

enable effective prediction and control of ship emissions in port areas. The accompanying development of 

a novel, scalable metric system further strengthened this approach, offering transparent, comparable, and 

operationally based evaluation of emissions performance. This integration represents a substantial 

advancement in harmonising predictive analytics with practical emission management at both local and 

broader regulatory scales. 

7.2. Main research contributions  

The overall aim of this doctoral research was to develop an adaptable, data-driven DSS capable of 

quantifying, predicting, evaluating, and optimising ship-related emissions in port environments. To 

achieve this, the research adopted a modular development strategy, progressively integrating 

methodological insights from existing literature and combining them with novel approaches and indicators 

introduced during the study. The resulting framework, the PrE-PARE DSS, was constructed through a 

phased, multi-paper research design that addressed five core research questions. These questions were 

formulated to sequentially identify current limitations, construct enhanced modelling methods, define new 

evaluation metrics, leverage machine learning for predictive accuracy, and demonstrate the practical 

implications of the system within real port contexts. 

Each research question is directly aligned with a corresponding module of the PrE-PARE system and its 

development over the course of this thesis. The contributions are based on applied case studies and 

supported by both theoretical analysis and empirical validation. The five research questions and the 

corresponding methodological responses are summarised below: 

• What are the methodological limitations and data inconsistencies in current ship emission 

inventories used in port areas, and how do these limitations hinder comparability and decision-

making? 

Paper 1 addressed this question by applying a systematic review methodology, critically assessing the 

prevailing ship emissions inventory frameworks. It identified key shortcomings, including the absence of 

methodological standardisation, spatial and temporal limitations confined to individual case studies, and 

variability of data quality. These limitations were shown to undermine the comparability of emissions data 

of different ports and timeframes, confining decision-making to a general standpoint. Paper 2 empirically 

validated these findings through the implementation of Module 1, which introduced a bottom-up, energy-

based emissions quantification approach applied to each port visit. This analysis of outputs produced 

confirmed the inability of conventional methods to reflect operational and spatial variability at the 

individual ship and overall port levels. 

• How can analytical modelling approaches be used to enhance the accuracy and interpretability of 
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port-level shipping emission estimates? 

This question was further addressed in Paper 2 through the development of Module 1, a data-driven 

emissions estimation module. By integrating AIS-derived movement trajectories with technical 

specifications of vessels, Module 1 enabled accurate and high-resolution emissions profiling per ship and 

per port call. The resulting model provided a transparent and reproducible framework that improved the 

interpretability of emissions in diverse port contexts by generating detailed technical, operational, spatial 

and temporal annalistic, thereby addressing critical issues identified in the first research question. 

• What indicators or metrics can be formulated to standardise the evaluation of emission efficiency 

and intensities across different ships and port areas? 

Paper 3 introduced and validated several novel metrics under Module 3 that allow for standardised, 

comparative, and interpretable emission assessment across vessel types and timeframes. These include: 

VAPOR: Measures emissions in grammes per hour per unit of working capacity, enabling consistent 

evaluation of emission efficiency across different ship types and modes. 

SHAPE: A scaling metric that normalises a ship’s emission efficiency relative to baseline averages, 

allowing for cross-comparison between vessels with similar functional roles and dimensions. 

SEIL: An intuitive, voyage-based ranking metric that expresses a ship’s total emissions relative to the 

average vessel, aiding stakeholder and public understanding. 

PERIL: A temporal classification tool using statistical thresholds to categorise port emissions into five risk 

levels (Very Low to Very High). 

SEPI: Integrates emission intensity and efficiency to rank ships based on overall environmental 

performance. 

EOP: Identifies deviation from baseline values (intra-ship performance) to highlight vessels with the 

greatest potential for improvement. 

Together, these metrics establish a coherent and scalable framework for monitoring, classifying, and 

managing ship emissions, suitable for port operators, regulators, and researchers alike. 

• How can machine learning methods improve predictive modelling of ship emissions in port 

operations? 

In Paper 4, Module 2 was introduced, employing the B-MARS algorithm as a predictive engine for 

emission estimation. The model was trained on 2019 data and tested on new datasets from 2021 to 2023. 

It demonstrated robust generalisation capabilities across different operational scenarios and vessel 

configurations. Importantly, the model also offered interpretability through feature importance rankings, 

identifying time in mode and auxiliary engine power as the dominant predictors across ship types. This 

capability not only enhances emission forecasting but also supports targeted emission control by 

identifying modifiable parameters. 

• What are the practical implications of the developed PrE-PARE DSS for port management, 

shipping industry, environmental monitoring agencies, maritime policy stakeholders, and the 

wider public? 

This final research question was addressed in both Paper 3 and Paper 4, particularly through the 

implementation of Module 4. This module completed the decision support loop by translating model 

outputs into actionable emission reduction strategies. Through performance-based and intensity-based 

optimisation procedures, supported by indicators such as SEPI and ST-EI, targeted measures were 

proposed for specific vessels and activities. In the Port of Split case study, the interventions enabled a 

possibility for a 55% reduction in daily emissions and the downgrading of the port’s PERIL classification 
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from Very High to Moderate. This confirmed the practical utility of the system for real-world applications, 

including emission-based berth scheduling, environmental tariff formulation, or regulatory planning. 

Moreover, the metrics used are interpretable and accessible, ensuring that results can be communicated 

effectively to both expert and public audiences. 

Although VAPOR was applied within the port area in this study, its calculation is not spatially limited. 

The model can be extended to evaluate emissions along the entire voyage, enabling continuous assessment 

from port to port across regional, sea, and oceanic passages. This flexibility enhances the relevance of the 

PrE-PARE DSS for broader applications, such as regional policy formulation, regional air pollution 

assessments, and international monitoring of emission performance of specific vessels or fleets. 
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8. Conclusion 

This doctoral research introduced and developed the PrE-PARE DSS, a comprehensive, modular, and 

data-driven framework designed to quantify, predict, evaluate, and optimise ship-sourced air pollution in 

port environments. The system was conceived from a universal methodological foundation combining 

standardised emission estimation techniques with advanced statistical and machine learning tools applied 

to extensive emission-related datasets. Data processing and modelling were primarily conducted through 

RStudio, supported by Python scripting for preprocessing tasks and Excel for data visualisation and 

graphical interpretation. 

The modular structure of the system ensured methodological flexibility, enabling the incorporation of 

novel metrics, updated datasets, and analytical enhancements without altering the core logic of the 

framework. Although designed to be universally applicable, the PrE-PARE DSS was implemented and 

validated through a detailed case study of the Port of Split. This application demonstrated the full 

operational capability of the system under real-world constraints, using it to generate detailed emission 

inventories, assess performance metrics, and implement predictive and optimisation scenarios. 

On the example of a high-traffic day, 2 July 2019, the system successfully quantified emissions and 

disaggregated their technical, temporal, and operational characteristics. It accurately predicted emissions 

for various ship types and operational modes, even under unseen environmental conditions. Furthermore, 

it enabled the evaluation of ship-level emission efficiency, categorised the port-wide risk of air pollution, 

and proposed targeted mitigation strategies that ultimately achieved a 55% reduction in total daily 

emissions. These outcomes confirm the system’s practical value for environmental management, 

operational planning, and regulatory support in seaport settings. 

Nonetheless, several limitations and areas for further development have been identified, forming the basis 

for future work. First, while the emission estimation module (Module 1) demonstrated robustness, the 

overall accuracy of results depends on the quality and completeness of AIS data, as well as on appropriate 

assignment of EFs and LFs. Shortcomings in these parameters may introduce variability, particularly for 

ship types with inconsistent reporting patterns or atypical engine configurations. 

Second, there is significant potential in combining diverse sources of emissions data, such as onboard 

measurements, fixed sensors, and satellite observations, to enhance data resolution and cross-validate 

modelled outputs. Third, environmental and behavioural parameters, including meteorological conditions 

and human decision-making, are currently not integrated into the system and could offer additional value 

for forecasting and risk analysis if appropriately modelled. 

Expanding the application of the system to different port environments, ship categories, and regulatory 

contexts would further demonstrate its scalability. This includes adaptation for specialised fleets (e.g., 

LNG tankers, container vessels), as well as incorporating port-specific corrective measures such as shore 

power or emissions trading schemes. 

In terms of methodological advancement, further refinement of the core metrics, particularly VAPOR and 

SHAPE, could support the development of dynamic, performance-based air pollution tariffs. These could 

incentivise cleaner operations and reinforce accountability among shipping actors. Additionally, stronger 

collaboration between the maritime industry, port authorities, and academic institutions will be essential 

for improving data transparency, standardisation, and adoption of such systems. 

Future developments may also involve the integration of alternative fuels (e.g. LNG, hydrogen, methanol) 

into emissions modelling, accounting for their unique profiles and operational characteristics. Finally, 

while this thesis focused on air pollution, the PrE-PARE DSS framework could be adapted to other forms 

of ship-induced environmental impacts, such as underwater noise, carbon footprints, or water pollution, 

thus paving the way for a broader, cross-impact environmental monitoring system for maritime transport. 
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In summary, the PrE-PARE DSS offers an adaptable, scalable, and practical foundation for data-driven 

environmental management in ports. Its ability to combine quantification, prediction, evaluation, and 

optimisation within a single coherent structure represents a significant contribution to both maritime 

environmental science and applied decision support methodologies. 
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Abstract: The global increase in shipping activity has contributed to the degradation of air quality,
which particularly affects traffic-dense port areas. Due to the environmental and public health im-
pacts of air quality in port cities, a number of inventories using varying methodologies have been
conducted over the past two decades to manage gas emissions in specific areas. The objective of
this work is to determine one relevant methodology for estimating ship emissions in ports through
a systematic review of the relevant literature. In this research, PRISMA guidelines were followed
through a multi-layer bottom-up analysis approach to ensure the validity of the proposed methodol-
ogy. The aforementioned methodology, as the end result of this research, is intended to provide an
empirically structured basis for further development of a novel indexing model of ship gas emissions
in port areas.

Keywords: shipping emissions; port sustainability; systematic review; methodology

1. Introduction

Shipping is the most efficient transportation mode in terms of energy usage per tonne
of cargo, covering more than 80% of global trade by volume [1–3]. Although maritime trans-
portation is still the least environmentally damaging mode of transport, it is responsible for
about 2.2%, 15% and 5 to 8% of global anthropogenic carbon dioxide (CO2), nitrogen oxide
(NOx) and sulphur oxide (SOx) levels, respectively [4,5]. In addition to the mentioned gases,
ships emit large quantities of particulate matter (PM), volatile organic compounds (VOCs)
and carbon monoxide (CO). Despite the fact that maritime emissions have worldwide
impact, some studies have indicated that about 70% of emissions from ships occur within
400 km of the coast, since most ships spend most of the time either harbored or near a
coast [6]. While CO2 is recognised as the leading greenhouse gas responsible for global cli-
mate change, the presence of PM, VOCs, CO, NOx and SOx in urbanised port areas requires
even more attention due to the negative effects of these pollutants on human health [5].
Pollutants emitted from ships can be responsible for respiratory diseases, cardiovascular
disease, lung cancer and even premature death, so it is necessary to monitor them and
mitigate their presence in port communities [7,8]. The severity of air quality degradation
is all the more serious when taking into account the fact that 90% of European ports are
spatially connected to cities [9].

Mitigation of vessel gas emissions on a global scale was addressed by the International
Maritime Organisation (IMO) in 1997 when Annex 6 “Prevention of Air Pollution from
Ships” of the MARPOL convention was introduced [10]. The main changes that MARPOL
Annex 6 brought in were a global progressive reduction in SOx, NOx and PM emissions and
the introduction of emission control areas (ECAs) [10]. Over the years, MARPOL Annex
6 has been revised and from January 2020, or January 2025, depending on the availability
of low sulphur for ships’ use, the global limit for sulphur content of ships’ fuel is reduced
from 3.5 mass by mass percent (% m/m) to 0.5% m/m, while in ECAs the content is pushed
down to 0.1% m/m [10]. Requirements for NOx emissions were defined using a three-tier
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methodology, where different levels (Tiers) of control apply, based on ship construction
date [11]. The less strict Tier 1 applies to vessels constructed on or after 1 January 2000,
Tier 2 to vessels constructed on or after 1 January 2011, while the most demanding Tier
3 regulates NOx emissions from vessels built after January 2016 that operate in the North
American and United States Caribbean Sea, the Baltic Sea or the North Sea ECAs.

The issue of air quality inside the European Union (EU) port sector was first recognised
in 2004 by the European Sea Ports Organisation (ESPO), while in 2013 it became a top
environmental priority and has remained so to this day [9]. Due to the influence of air
quality on the environment and public health of port cities, a number of different inventory
studies have been conducted throughout the last two decades in order to manage gas
emissions in particular interregional, national or local areas. For inventory development,
two different approaches that are most commonly applied are the top-down approach and
the bottom-up approach.

A top-down approach can be described as a fuel-based (FB) method, where fuel sales
statistics are used to estimate the total mass of the fleet fuel consumption (FC) inside a
specific area of interest in a certain time period. That information is then combined with
the emission factor (EF), which denotes the mass of emitted pollutants per metric tonne (t)
of fuel consumed in order to finally obtain the total mass of emitted pollutants (E), which is
represented in Equation (1) [12]:

E = FC × EF (1)

The main advantage of this fuel-based (FB) concept is that it is not data-excessive.
This means that data that only generally describe a particular fleet and its FC and EF can be
used. Thus, this approach is recommended for situations where only limited traffic data are
available [12]. However, applying generic data that are associated with a level of uncertainty
can produce outputs that differ from realistic emissions. The corresponding EFs are highly
aggregated, with averaged values, and do not take into account the specific conditions that
lead to instantaneous emission production in any given circumstance [13]. Moreover, it has
been proven that there is a significant discrepancy between banker fuel sales statistics and
the actual fuel used by global fleets, so it cannot accurately reflect emissions in response to
specific shipping activities [13,14]. This is especially relevant for small interest areas such
as ports, where fuel sales data have lower accuracy. Therefore, the top-down approach is
most commonly used in large-scale inventories where it is more practical to gain insight
into shipping emissions by acquiring less detailed data based on FC.

When detailed information about a ship’s movement dynamics and its technical
data (TD) are available, then the bottom-up approach is recommended. This method is
characterised as activity-based and data-demanding, since it requires a higher level of
input parameters for each movement activity (MA); however, it is able to produce near
instantaneous emission estimation on a vessel-by-vessel basis at high resolution (in time
and space) [12,13]. In a bottom-up approach, emission estimations are obtained for each
movement type by combining engine energy output (EO) or FC with EF and time (T) values
that correspond to specific activities (e.g., hoteling, manoeuvring and navigation) [15,16].
To figure out the total shipping emissions in a certain area and time period, all estimated
quantities of each activity are combined and scaled up over all trips [12]. In the bottom-up
approach, both energy-based (EB) and FB methods can be applied. These methods are
shown in the EB Equations (2) and (3), along with the FB Equation (4) [12,16]. When gas
quantification is conducted by relying on an EB approach, EO is determined by multiplying
total engine power (P) by the actual percentage of engine work output, expressed as load
factor (LF). In this case, EF is defined as the mass of pollutants emitted per an engine’s
energy output:

E = EO × EF × T (2)

EO = P × LF (3)

E = FC × LF × EF × T (4)
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Since the bottom-up approach is data-excessive, it is generally applied in small-scale
ship emissions inventories in regional and port contexts, and to aggregate the required
data the Automatic Identification System (AIS) is often used. AIS transmits near real-
time dynamic information about vessel speed, course and position, which is crucial for
anticipation of ship-based emissions. Therefore, high-resolution ship motion data from AIS
could be a source of reliable relative ship operation profiles, such as travel time and average
speed between waypoints at sea in short time intervals, and could be used to identify ship
routes [12]. Although the installation of AIS is required by the International Maritime
Organisation (IMO) on commercial ships with 300 gross tonnage (GT) and all passenger
ships, relying solely on information from this device, a proportion of marine traffic remains
invisible [17]. To improve data quality, more than one source of traffic information should
be considered in gas emission inventory development. However, regardless of data quality,
the method by which it is used is of equal importance.

That is why, in this paper, a multi-layered analysis approach is applied with the
aim of finding the most applicable methodology for the estimation of gas emissions from
ships in port areas. The methodology, as the end result of this research, should provide
an empirically structured basis for the further development of novel ship-sourced gas
emissions indexing models in port areas. To ensure the adequate standard of the whole
review process, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA 2020) guidelines were followed in this paper [18]. Regarding the search strategy
method employed, a bottom-up systematic review of the literature that explored port-
related shipping emissions was conducted by applying relevant keyword and reference
thread analyses in the Web of Science Core Collection, Scopus and Google Scholar databases.
Search and screening of the selected papers was carried out by the authors.

2. Review Methodology

At the very beginning of the review process of the literature in which shipping emis-
sions in ports were explored, it was possible to notice that various methodologies and data
were applied, but with frequent similarities and mutual reference connections. Further-
more, it was recognised that the approaches and datasets used were mainly obtained from
other studies. Therefore, in order to find a valid port-related ship emissions estimation
methodology, a systematic review of the relevant literature needed to be carried out. That is
why PRISMA guidelines were followed in this paper according to the proposed bottom-up
multi-layered analysis approach presented in Figure 1.
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Figure 1. Bottom-up multi-layered analysis approach.

The review process began with keyword thread search of literature in the Web of
Science Core Collection, Scopus and Google Scholar databases, using combinations of terms
that included: port, ship, emissions, inventory, gas, pollution, quantification, method. After
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record screening, selected reports went through the analysis process, wherein references to
the methods and datasets obtained from different sources were collected. These reference
strings were used in the second review, expanding the search to websites of relevant
organizations whose studies were cited. By applying both keyword and reference literature
identification approaches, metrologies and data used in selected papers could finally be
connected with the original sources, so that after completing the second screening it was
finally possible to produce a full overview of the selected literature with the original
sources of methods and datasets applied in them, thus finishing the first layer of the overall
analysis. The complete review and analysis process is displayed in Figure 2 and a detailed
explanation is provided below.
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Figure 2. PRISMA 2020 analysis flow diagram for new systematic reviews which included searches
of databases, registers and other sources [19] * According to the PRISMA glossary of terms, a study
is defined as a larger scientific document that might have multiple reports, while a report is a
document that supplies information about a particular study, such as a journal article, a conference
abstract, a preprint, etc. [18]. That is why, in this research, the term “study” stands for large emission
inventories that were mostly used as reference sources for methodologies and data. Accordingly,
“report” is defined as a scientific paper of the sort reviewed in this research. ** Records that were
identified were from the Web of Science Core Collection, Scopus and Google Scholar databases.
*** Since no automation tool was used, all exclusions of literature were carried out by the authors of
this paper.

The overview of the selected papers and their references were examined in the second
layer, with the aim of determining the most influential methods and datasets through
the quantification of their original sources. To ensure the relevance of reference quan-
tification, the mutual citing connections between all sources used in the selected papers
were first analysed with the aim of duplicate exclusion. This resulted in defining multiple
sources that used the same methods and/or key data as an individual source. By per-
forming mutual-referencing analysis, the exact number of different methodologies and key
datasets cited were determined. Thus, the most influential sources could be defined and
thoroughly examined.
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A review of the most prominent studies was performed in the third layer of the process
through an analysis based on the methodologies and datasets used in the selected literature.
The analysis aimed to define the advantages and similarities of the most frequently applied
approaches and datasets from the examined studies. This validation process enabled the
determination of all vital components necessary for quantifying gas emissions from ships
in ports.

Finally, validated components determined through the multi-layer bottom-up pro-
cess were analysed and combined inside the methodology best fitted for calculating ship
emissions in different port areas. The methodology proposed through the review process
applied in this paper should ensure relevancy as the basis for the development of a novel
ship-based gas emissions indexing model.

3. Discussion and Results
3.1. Analytical Overview of the Literature—First Layer

By conducting a systematic review of the literature according to PRISMA 2020 guide-
lines, 32 original papers that explored shipping emissions in 80 ports between 2008 and
2021 were selected for further analysis. With the aim of providing a transparent overview
of the literature, Table 1 lists the abbreviations of the aforementioned studies and papers,
while their reference numbers are listed at the end of the paper. The analytical overview
of records was conducted by examining, comparing and linking applied methods and
databases with studies and papers, which were the original refence sources, as summarised
in Table 2.

Table 1. Abbreviations of cited studies and papers with their reference numbers.

Abbreviation Reference Number Abbreviation Reference Number Abbreviation Reference Number

CAPSS/PAQman© [20] CARB 06 [21] CARB 07 [22]
FEMA 09 [23] EEA 09 [24] EEA 13 [25]
EEA 16 [26] EEA 19 [16] EEM 10 [27]

ENTEC 02 [28] ENTEC 05 [29] ENTEC 07 [30]
ENTEC 10 [31] IMO GHG 09 [32] IMO GHG 14 [33]
SMED 04 [34] IVL 05 [35] L R 95 [36]

MAN [37] MEET 98 [38] NEI 10 [39]
POLA 04 [40] POLA 08 [41] POLA 09 [42]
POLA 12 [43] POLA 13 [44] POLB 10 [45]

SEA [13] STEAM [46] US EPA 06 [47]
US EPA 09 [48] PIRAEUS 09 [49] SAMSUN 10-15 [50]

The analytical overview process allowed for the following conclusions to be drawn.
Primarily, it was found that the authors of all papers relied on bottom-up methodolo-
gies, since they explored port-related emissions with good data coverage. An additional
top-down approach was applied only for two records in order to make an output value
comparison. Therefore, the EB method was predominant since it was used in 26 papers.
By contrast, the FB approach was applied for only three publications, and for the same
number of papers a combination of both methods was used. Datasets applied for calculat-
ing emissions were obtained both locally and from studies. Locally sourced datasets that
were derived from Local Port Authorities (LPAs), Local Port Communities (LPCs), National
Maritime Organisations (NMOs), AIS, Vessel Traffic Services (VTSs), traffic density data
(TDD) or from studies offered information about marine traffic through TD on the ships and
their MA. LF and EF data, as more complex components in the gas emissions determination
process that depends on specific information about vessels and their activity, were either
taken from studies as predefined default values or were estimated on a methodological
basis from the same sources.
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Table 2. Analytical overview of the literature that explores port-related ship emission sources.

Record Data Methodological
Base and Reference

Data Method and/or
Default Reference Abbreviation

No. Paper Port Year Method
Base Approach Method Reference

Abbreviation
MA and TD of

Trafficgram EF LF

1 [51] Mumbai 2008 EB Bottom-up MEET 98 LPA US EPA
06/MEET 98

US EPA
06/POLA 04

2 [49] Piraeus 2009 EB Bottom-up ENTEC 07/US EPA 06 LPA ENTEC
02/ENTEC 07 PIRAEUS 09

3 [52] Ambarlı 2009 FB Bottom-up MEET 98 LPA MEET 98 MEET 98

4 [53] Busan 2010 EB Bottom-up CARB 06 LPA ENTEC
02/SMED 04

ENTEC
02/CARB 06

5 [54] 10 terminals—
Turkey 2010 EB Bottom-up ENTEC 05 LPA/EEA 06 ENTEC 05 ENTEC 05

6 [55] Barcelona 2011 EB Bottom-up US EPA 09 LPA/LPC US EPA 09 US EPA 09

7 [56] Kaohsiung 2012 EB Bottom-up ENTEC 07/US EPA 06 LPA ENTEC
05/ENTEC 07 POLA 08

8 [57] Hong Kong 2012 EB Bottom-up US EPA 06 AIS/LPA
US EPA

06/ENTEC 02/L
R 95

US EPA 06

9 [58] Shanghai 2013 EB Bottom-up ENTEC 02/SMED
04/POLB 10/IMO GHG 09 AIS/LPA

POLB 10/ENTEC
02/CARB

07/SMED 04
POLB 10

10 [59] Izmir 2013 EB Bottom-up ENTEC 05 LPA ENTEC 05 ENTEC 05
11 [60] Incheon 2013 FB Bottom-up US EPA 06 LPA POLA 08 POLA 08
12 [61] Bergen 2013 FB Bottom-up US EPA 06/EEM 10 LPA NEI 10 FEMA 09

13 [62] Hong Kong 2013 EB Bottom-up US EPA 09 AIS/LPA/L MIU US EPA
09/POLA 09

US EPA
09/POLA 09

14 [63] 14 ports—
Spain 2014 EB Bottom-up EEA 09 LPA/ENTEC 05 ENTEC 05 ENTEC 02

15 [64] Busan 2014 EB Bottom-up CARB 06/ENTEC 02 L MIU

ENTEC
02/ENTEC
05/ENTEC

07/SMED 04

ENTEC
02/CARB 06

16 [65] 3 ports—
Taiwan 2014 EB Bottom-up ENTEC 05 NMO US EPA

09/ENTEC 02

POLA 04/US
EPA 06/US

EPA 06
17 [66] Las Palmas 2015 EB Bottom-up STEAM AIS/LPA STEAM STEAM

18 [67] Dubrovnik
and Kotor 2015 EB Bottom-up US EPA 06/US EPA

09/ENTEC 07 LPA US EPA 09 PIRAEUS 09

19 [68] 34 ports—
Australia 2015 FB/EB Top-down/

bottom-up
ENTEC 02/SMED

04/POLA 12 AIS/LPA

ENTEC
02/SMED

04/IVL
05/POLA 12

US EPA 09

20 [69] Tianjin 2016 EB Bottom-up
ENTEC 02/SMED

04/POLB 10/POLA
12/POLA 13

AIS/LPA SMED 04/US EPA
09/ENTEC 02 POLB 10

21 [70] 18 ports—
Greece 2016 EB Bottom-up ENTEC 07 AIS/LPA ENTEC 07 PIRAEUS 09

22 [5] 4 ports—
Portugal 2017 EB Bottom-up EEA 16 L MIU

EEA 16/ENTEC
02/US EPA

09/SMED 04
ENTEC 02

23 [71] Zadar 2018 EB Bottom-up EEM 10 LPA/ENTEC 02 ENTEC 10 ENTEC 02/US
EPA 06

24 [50] Samsun 2018 EB Bottom-up ENTEC 05 LPA ENTEC 05 SAMSUN
10–15

25 [72] Incheon 2019 FB/EB Top-down/
bottom-up CAPSS/PAQman© AIS/LPA EEA 13/US EPA

09/ENTEC 02 US EPA 09

26 [73] Split 2020 EB Bottom-up EEA 19 LPA/LPC/ENTEC 02 ENTEC 10 ENTEC 02

27 [74] Split 2020 EB Bottom-up EEA 19 LPA/ENTEC 02 US EPA 09/
EEM 10 US EPA 09

28 [75] Šibenik 2020 EB Bottom-up ENTEC 10 LPA ENTEC 10 ENTEC 02/US
EPA 09

29 [76] Incheon 2020 EB Bottom-up US EPA 09/EEA 19 VTS
ENTEC

02/SMED 04/US
EPA 09

US EPA 09

30 [12] Incheon 2021 EB Bottom-up US EPA 09/EEA 19 VTS
ENTEC

02/SMED 04/US
EPA 09

US EPA 09

31 [77] Kotor 2021 EB Bottom-up EEA 16 LPA US EPA 09/
EEM 10

US EPA
06/POLA 04

32 [13] Trieste 2021 FB/EB Top-down/
bottom-up SEA TDD IMO GHG 14 MAN

The data on the amount and type of emissions in all examined papers were analysed
but were not comparable even for the same ports. This was due to several factors. First,
the different papers used different methods and datasets for the emission calculations,
so comparing the gas volume values would not describe the relationship between the
measurements in a relevant way. Even if the same method was applied in the same
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interest area, all factors and datasets used for the calculations had to be identical to obtain
comparable emission results. The most obvious examples of the mentioned discrepancies
in factors are variations in gas types, ship types or shipping distances. However, in order
to provide a valid systematic verification of the calculated emission data, regardless of the
method and datasets used, it was necessary to establish a standardisation system for the
main ship sources. Since no scalable solution was found in the selected work that would
provide a basis for comparative data analysis, only the emission prediction methods and
datasets were examined.

Finally, it was discovered that most methodologies and/or data segments used in the
mentioned papers, were outsourced from the 5 papers and 28 large-scale gas emissions
studies developed by, or for, national and interregional organizations responsible for
air pollution monitoring and management. However, to specify which sources where
predominantly used, and thereby expose the most convenient databases and methods,
duplicate exclusion and quantification methods had to be performed in the next step.

3.2. Duplicate Exclusion and Quantification of Sources—Second Layer

The aim of this phase was to determine the most relevant methods and datasets
for ship emissions estimation in ports through the quantification of sources used in the
overviewed literature. During the overview, however, it was discovered that some reference
records dating from different years had been declared as different sources, despite having
the same methodological and data background. That is why, preliminarily to quantification,
a reference exclusion based on method and dataset comparison was applied. In this
procedure, all sources that were developed by or for the same organisations and explored
similar interest areas, were considered for a cross-reference check of methodology and
dataset aspects that corresponded with the overview in the first step. In the analysis
processes, it was noticed that selected sources did employ the same methodologies for
calculating emissions and determining data, though data values varied somewhat. That
is why the methodological exclusion and quantification of reference sources is presented
in Table 3, while the data were subjected to further analysis in order to find similarities
relevant to exclusion based on datasets.

Table 3. Exclusion and application quantity of references based on methodology.

No. of Reports Report Report Type No. of Reports
after Exclusion

Application
Quantity

1 CAPSS/PAQman© Study 1 1
2 EEA 09 Study

2 9
3 EEA 16 Study
4 EEA 19 Study
5 EEM 10 Study
6 ENTEC 02 Study

3 13
7 ENTEC 05 Study
8 ENTEC 07 Study
9 ENTEC 10 Study

10 IMO GHG 09 Study 4 1
11 SMED 04 Study 5 3
12 MEET 98 Study 6 2
13 POLA 12 Study

7 414 POLA 13 Study
15 POLB 10 Study
16 SEA Paper 8 1
17 STEAM Paper 9 1
18 CARB 06 Study

10 1219 US EPA 06 Study
20 US EPA 09 Study
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In the analysis process, it was found that the noted data discrepancies between the
reports that had the same research background was primarily relevant for MA and TD
about marine traffic, which consequently affected LF and EF values. The main reason for
the mentioned value diversity was the changes in fleet characteristics that happened over
the time when the research was conducted. As a result of these changes, reports that had
the same research background but different data values were considered as the same source,
since the latest version was the most relevant for referencing. Therefore, Table 4 presents
an overview of the reports whose data were most often applied in selected papers.

Table 4. Exclusion and application quantity of references based on data.

No. of Reports Report Report Type No. of Reports
after Exclusion

Application
Quantity for EFs

Application
Quantity for LFs

1 PIRAEUS 09 Paper 1 / 3
2 SAMSUN 10–15 Paper 2 / 1
3 CARB 06 Study

3 1 24 CARB 07 Study
5 FEMA 09 Paper 4 / 1
6 EEA 13 Study

5 2 /7 EEA 16 Study
8 EEM 10 Study 6 2 /
9 ENTEC 02 Study

7 21 9
10 ENTEC 05 Study
11 ENTEC 07 Study
12 ENTEC 10 Study
13 IMO GHG 14 Study 8 1 /
14 SMED 04 Study

9 8 /15 IVL 05 Study
16 L R 95 Study 10 1 /
17 MAN Study 11 / 1
18 MEET 98 Study 12 2 1
19 NEI 10 Study 13 1 /
20 POLA 04 Study

14 4 7
21 POLA 08 Study
22 POLA 09 Study
23 POLA 12 Study
24 POLB 10 Study
25 STEAM Paper 15 1 1
26 US EPA 06 Study

16 13 1327 US EPA 09 Study

After the exclusion of reports based on methodological and dataset duplication,
the quantity of diverse reports decreased significantly. The number of reports used as
method references was reduced from 20 to 10, while 16 different sources of datasets were
acknowledged from the original 27 sources. In addition, all selected reports were recog-
nised as studies, with the exception of three papers. Finally, quantification of the studies
and papers used as references in the reviewed literature provided insight into the most
commonly used methods and datasets. So, by combining the citation frequency from each
report, the most relevant papers and studies are exposed and presented in Figure 3.
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3.3. Analysis of the Most Commonly Applied Methodologies and Datasets—Third Layer

By quantifying the reports used as methodological and data references in papers
dealing with the estimation of ship emissions in ports, the seven most relevant studies
stood out. The objective of this step was to examine the methods and data developed
in these studies in order to determine the methodological and informational segments
relevant to emission estimation. An overview and analysis of the equations, along with their
methodological background and key data for determining emissions quantity, are presented
throughout this examination process. However, since the methodologies and datasets may
have changed over the years, the latest available and most actual editions of the commonly
referenced studies were analysed.

3.3.1. ENTEC and NAEI Research

The primary objective of the ENTEC 10 research established by the Department for
Environment, Food and Rural Affairs (Defra) was to develop a detailed ship emissions
dataset that could be used to inform United Kingdom (UK) policies targeting shipping
emissions [31]. Although this inventory was based on information about ship movements
from 2007, it is a continuation of the ENTEC 02, ENTEC 05 and ENTEC 07 studies. The ap-
proach is consistent with the methodology for quantifying ship emissions in the EEA 09 and
relies on information that largely dictates the emissions from a vessel: installed engine
power, type of fuel consumed, vessel speed and distance travelled (or time spent travelling
at sea), time spent in port and installed emission-abatement technology [31]. Although
the methodology follows the EEA 09 guidelines, equations, types of vessels and EFs are
different, so this research was analysed separately. Activity data on vessel movement and
port entries was provided by the Lloyd’s Marine Intelligence Unit (L MIU) which used
AIS data for movements that were not recorded in the port arrivals statics. In addition,
the aforementioned information was compared with the Department for Transport’s (DfT)
data in order to corroborate them. Static data that largely dictate emission volumes, such as
vessel characteristics (type and service speeds) and main engine (ME) and auxiliary engine
(AE) characteristics (type, speed and fuel type) were gathered from the L MIU database.
Although this study has a UK focus, the generic values of key elements for quantifying
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emissions can be applied in different research areas since L MIU compiles one of the largest
datasets containing vessel information. Although this research treats of three different
movement activities, the equation for at-sea activity is separated from the equation for port
emissions that is related to hoteling and manoeuvring activities. Equation (5), presented
below, is applicable for determining port emissions [31].

E = T × [(ME × LFME)) × EF + (AE × LFAE)) × EF (5)

where:

E: Emissions per vessel—in grams (g);
T: Average time spent at berth/manoeuvring per calling—in hours (h);
ME: Installed main engine power—in kilowatts (kW);
LFME: Average load factor of main engine at berth/manoeuvring—as a percentage of ME
power (%);
AE: Installed auxiliary engine power—in kilowatts (kW);
LFAE: Average load factor of main engine at berth/manoeuvring—as a percentage of ME
power (%);
EF: Emission factors assigned to each vessel for at berth/manoeuvring depending on each
fuel type and engine speed—in grams per kilowatt hour (g/kWh).

ENTEC 10 was the last research provided by Entec ltd. that explored shipping emis-
sions for Defra, relevant to the UK waters [31]. That is why it should be emphasised that in
the latest UK National Atmospheric Emissions Inventory (NAEI) conducted for Defra, EEA
methodology was followed with differences in applied data [78,79].

3.3.2. US EPA Research

The purpose of US EPA 20 was to provide guidance for the development of a mobile
source port-related air pollution emissions inventory within a designated area in a given
time period. This document supersedes the previous April 2009 document US EPA 09 [80].
For the ocean-going vessel (OGV) sector, a bottom-up EB emission estimation methodology
was presented, according to which both AIS and traffic statistics data could be applied
using Equation (6). According to this document, the information necessary for emission
calculations includes engine characteristics (that describe engine power, type, age, speed
and category), ship speed, position and course. From the mentioned data, EF and LF can
be obtained. In this publication, five different movement activities have been recognised
(Transit, Manoeuvring, Restricted Speed Zone, Hotelling, Anchorage) and defined by LF.
To obtain the value of LF, the propeller law is used. In the end, when actual activity is
recognised, the predefined low load adjustment factors (LLAFs) can be applied [80].

E = P × A × EF × LLAF (6)

where:

E: Emissions per vessel by mode—in grams (g);
P: Engine operating power—in kilowatts (kW);
A: Engine operating activity—in hours (h);
EF: Emission factors of different pollutants in regard to engine group, engine type, fuel
type, keel laid—in grams per kilowatt hour (g/kWh);
LLAF: Low load adjustment factor, a unitless factor that reflects increasing propulsion
emissions during low load operations—always 1 for auxiliary engines and boilers.

3.3.3. POLA and POLB Research

The Port of Los Angeles’ (Port or POLA) annual activity-based emissions inventories
serve as the primary tool for tracking the Port’s efforts to reduce air emissions from maritime
industry-related sources. This study was prepared in coordination with the Port of Long
Beach (POLB) and the following air regulatory agencies: the U.S. Environmental Protection
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Agency, Region 9 (US EPA), California Air Resources Board (CARB) and the South Coast Air
Quality Management District (South Coast AQMD) [81]. The methodology for estimating
emissions was taken from the San Pedro Bay Ports Emissions Inventory Methodology
Report, in which the EB approach was applied to every movement activity of OGVs within
the harbour district for 40 nautical miles (NMs) [81,82]. The aforementioned methodological
background is summarised in Equation (7). The traffic data for the emission estimation is
provided through AIS and various statistical reports. The Energy component is determined
by combining LF with the time spent in a particular activity mode [82]. Emission sources
for all vessel categories include ME (propulsion), AE (generators) and auxiliary boilers
(ABs). LF defaults are provided for AE and ABs for all movements (Transit, Manoeuvring,
At Berth, Shift, At Anchorage), while ME load is estimated through propeller law [81,82].
In addition, average values of vessel characteristics relevant to emission estimation are
introduced. The mentioned data correspond to the OGV traffic in the port area.

Ei = Energyi × EF × FCF × CF (7)

where:

Ei: Emissions by mode—in grams (g);
Energyi: Energy demand by mode as the energy output of the engine(s) or boiler(s) over
the period of time—in grams per kilowatt hour (g/kWh);
EF: Emission factor depends on engine type, IMO tier and fuel used—in grams per kilowatt
hour (g/kWh);
FCF: Fuel correction factors are used to adjust from a base fuel associated with the EF and
the fuel being used—dimensionless;
CF: Control factor(s) for emission reduction technologies—dimensionless.

3.3.4. SMED—IVL Research

The methods for calculating emissions in Swedish emissions reporting have been
developed in two reports (SMED 04 a, b), in which emission factors have been developed
that can be used to calculate emissions together with statistics on fuel sales for domestic
and international transport [83]. However, in recent years, the Swedish Environmental
Research Institute (IVL) has developed a novel emission calculation model for ships in
ports. With this model, it is possible to calculate the emissions of carbon dioxide, nitrogen
oxides, particulate matter and sulphur dioxide, as well as the fuel consumption of ships
during port calls [84]. Taking into account the evolution of engine and fuel characteristics
from 2004, SMED 20 introduced effective emission factors that can be used for emissions
reporting [83]. According to this new method, LFs are estimated by the propeller law,
and by applying AIS data along with statistical information from ports it is possible to
calculate ship emissions with greater accuracy. The aforementioned IVL calculation model
for emissions from ships in port areas is constructed around Equation (8) [83,84]:

E = EF × t × P (8)

where:

E: Resulting emissions—in grams (g);
EF: Emission factors that can depend on, e.g., engine age, type of engine, fuel used and
exhaust gas aftertreatment—in grams per kilowatt hour (g/kWh);
t: Time in an operational mode—in hours (h);
P: Power needed in an operational mode—in kilowatts (kW).

The power requirements are most often calculated as the product of installed engine
power and an engine load factor—an assumed value. Many generic values are used, and by
comparing results with alternative datasets for input on ships’ speeds, power requirements,
etc., inaccuracies can be removed and rectified [84].
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3.3.5. EEA Research

General guidance for the control of ship emissions in the EU has been provided by the
European Environment Agency (EEA) through the EEE 20 Guidebook, Section 1. A.3.d. [85].
The key function of the EEA 20 Guidebook is to offer estimation methods and emission
factors for developing inventories at various levels of sophistication that are transparent,
consistent, complete and comparable [85]. Guidelines of different complexities for cal-
culating ship-sourced gas emissions are incorporated in its three-tier system. The less
data-demanding Tier 1 and Tier 2 approaches use fuel sales as the primary activity indi-
cator and assume average vessel emission characteristics to calculate emissions estimates.
The Tier 3 methodology is based on ship movement information for individual ships
and requires detailed ship motion activity data, as well as technical information about
ships [16]. The practical aspect of the Tier 1 and Tier 2 approaches is that they require less
detailed data and are better suited for quantifying gas emissions at the national level, while
the Tier 3 activity-based level can provide detailed site-specific results. For this reason,
the Tier 3 methodology, applicable to port areas, is conceptualised in FB Equation (9) and
EB Equation (10) [16].

ETrip,i,j,m = ∑p (FCj,m,p × EFi,j,m,p) (9)

ETrip,i,j,m = ∑p [Tp ∑e(Pe × LFe × EFi,j,m,p) (10)

where:

ETrip: Emission over a complete trip—in metric tonnes (t);
FC: Fuel consumption—in metric tonnes (t);
EF: Emission factors of different pollutants in regard to engine category, engine type, fuel
type, activity mode—in kilograms per ton of fuel (g/t) or grams per kilowatt hour (g/kWh);
i: Pollutant;
m: Fuel type;
j: Engine type;
p: The different phase of trip (activity);
LF: Average load factor of engine at berth/manoeuvring—as a percentage of engine power (%);
P: Engine nominal power—in kilowatts (kW);
T: Average time spent in phase of trip (activity)—in hours (h);
e: Engine category.

3.4. Comparative Analysis of Key Components and Proposition of Relevant Methodology for
Estimation of Ship Emissions in Ports—Fourth Layer

After reviewing the selected studies, it was concluded that the general methodologies
for estimating ship emissions in ports are based on a combination of data about ship en-
gines, fuel consumed and movements, along with their effects on engine performance and
EFs based on energy consumption. Depending on their complexity, all of the aforemen-
tioned factors contain several key components that, by interacting with each other, largely
determine the amount of gas emissions from the ship. The key components, that is, the data
that define them, can be considered static and dynamic. The static data on particulars of
the ships and their engines describe components for emission calculations, such as engine
power (EP), engine function, engine type and fuel type. It can therefore be said that TD can
be described as static while MA can be considered dynamic data. Ship MA is categorised by
the operational mode of the ship’s propulsion system and defined by dynamic information
on the percentage of ME and AE working load expressed as LF. Since different activities do
not have the same impacts on emissions, it is equally important to consider the time spent in
each operational mode. Finally, as the central and most complex segment of the emissions
quantification process, EF depends on both static data about engine function, engine type
and fuel type and dynamic information about the characteristics of the ship’s activities.
Throughout the analysis of the studies, it was also found that mainly a combination of
maritime traffic statistics from local or national maritime organisations and AIS information
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was used in data collection. Given this, traffic information can be compared and validated,
resulting in more accurate emissions values estimates.

By combining all the analysed key data and methodological factors used in selected
studies, a proposition of a relevant methodology for the estimation of ship emissions in
ports can be introduced. To begin with emissions estimation, data acquisition should
be carried out by combining multiple sources of marine traffic information. With the
widespread use of AIS, better coverage of both static and dynamic information about
ships and their movements is available. Therefore, a bottom-up EB approach is proposed.
However, in order to validate AIS information and to get an overview of vessels that are
not required to have an AIS onboard, statistical information representing the TD of the
traffic inside the interest area should be applied. As can be seen in Figure 4, all key factors
in emissions estimation are classified by colour and linked inside a methodology and
data diagram for port-related calculation of emissions on a ship-by-ship basis. Within the
diagram, grey colouring marks the static TD on the ship and its engines; blue indicates
the combination of static and dynamic data for estimating LF through the propeller law
and thereby determining a ship’s MA; the colour yellow represents more complex datasets
defined by TD and classified through methodological aspects relevant to traffic inside
the research interest area; finally, orange indicates the key elements for calculating ship
emissions as an output value, which is marked in red. The interactions of all key segments
outlined in this research are presented in Equation (11) for estimating ship emissions
in ports.

E = (PME × LF × EFME + PAE × LF × EFAE) × T × CF (11)

where:

E: Emissions quantity by mode for each ship call—in grams (g);
PME/AE: Total power of main engines/auxiliary engines—in grams per kilowatt hour
(g/kWh);
LF: Load factor expressed as actual engine work output—as a percentage of engine power (%);
EF: Emission factors of different pollutants in regard to engine function, engine type, fuel
type, installation year—in grams per kilowatt hour (g/kWh);
T: Time spent in a certain movement activity—in hours (h);
CF: Control factor for emission reduction technologies—constant.
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Figure 4. Proposal of methodological and data key factors for port-related calculation of emissions
on a ship-by-ship basis.
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4. Conclusions

The main goal of this review paper was to determine the most applicable methodology
and datasets for quantification of port-related ship emissions through the presented bottom-
up multi-layer analysis approach. The goal of the first layer was to provide an analytical
overview of methodologies and datasets used in port-related ship emissions studies through
a bottom-up PRISMA approach. After that, the methodological background of each selected
scientific paper was thoroughly examined and connected to the original source of used
methods. The methodological sources identified through the analysis were aggregated and
quantified in the second layer to obtain the most commonly used methods in the relevant
research. In the third layer, the methodologies and data of the most commonly used studies
were examined and compared. By means of this, in the last layer, a proposal for the most
applicable shipping emission quantification methodology for port areas was produced and
explained through all key factors.

However, regardless of an approach used in examined studies, a scalable solution
that would allow extensive insight into the main shipping sources of pollution was not
introduced. The development of a unique standardisation system would not only enable
better communication and integration with the wider port city community but could also
serve as a basis for better predication and mitigation of ship-sourced emissions at a local and
national level. Therefore, a method generated through the multi-layered analysis approach
presented here will be used as the first step in future research into the development of a
ship-sourced gas emission indexing model for port areas.
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Abstract: Intensive shipping activity in port areas is considered one of the leading problems in the
maritime sector, which has a negative effect on climate change and local air quality. The compilation
of detailed inventories of combustion gases released by ships should therefore provide a more
accurate overview of emission levels, which can serve as a basis for analysing impacts on the
port community and lead to the establishment of better environmental measures. Thus, the aim
of this study was to develop an adaptable and relevant analytical model capable of integrating
a comprehensive methodology with large databases of ship movements and technical details to
provide clear ship-related emission estimates in large port areas. Considering the lack of research in
Croatia that includes the mentioned approach and the insufficient monitoring of air pollutants in
ports, the model was used to produce an initial overall emissions inventory for the Port of Split, the
busiest passenger port in Croatia. In the model, bottom-up logic with an energy-based method was
applied to detailed technical and near-real-time shipping data from AIS, creating the first high-density
spatial and temporal overview of shipping emissions in the City port basin. The results showed
strong seasonal fluctuations and large discrepancies in the quantities emitted between different ship
types and operating modes. The analysis therefore raised the question of the need for the future
development and implementation of a scalable system that would provide a more transparent and
efficient overview of the important characteristics of air pollution from ships and port areas.

Keywords: ship emissions; air pollution modelling; AIS; environment; Port of Split

1. Introduction

Although shipping is widely recognised as the most sustainable mode of transport
since large volumes of cargo can be carried in a single trip, extensive quantities of marine
fuels are used for propulsion during transportation [1–4]. The internal processes of energy
conversion and combustion in ship engines mainly produce air pollutant substances (APSs)
such as sulphur oxides (SOx), nitrogen oxides (NOx), particulate matter (PM), carbon
monoxide (CO), and volatile organic compounds (VOC), as well as carbon dioxide (CO2),
methane (CH4), and nitrous oxide (N2O), recognised as greenhouse gases (GHGs) [1,5–7].
While anthropogenic GHGs are responsible for global warming and the adverse effects of
climate change, other air pollutants released from fuel combustion have serious impacts on
human health in urban areas [1,7,8]. It was documented that exposure to the PM2, SOx,
NOx, CO, and VOC is associated with respiratory illness, cardiovascular disorder, lung
cancer, and premature mortality [8,9]. Given that 70 to 80% of world trade is seaborne,
maritime transport contributes significantly to anthropogenic emissions [1,3].

Aiming to reduce ship-sourced air pollution, the International Maritime Organisation
(IMO), in 1997, extended the MARPOL convention with Annex 6 “Prevention of Air
Pollution from Ships”. The main objective of the entry into force of MARPOL Annex 6 was
to mitigate SOx, NOx, VOC, and PM emissions by establishing stringent fuel quality and
emission control regulations applicable to ships and Emission Control Areas (ECAs) [10].
Under the revised MARPOL Annex 6, the global sulphur limit is reduced to 0.50% mass
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by mass percent (% m/m), effective from 1 January 2020, while the content in ECAs is
reduced to 0.1% m/m [10]. Progressive reductions in NOx emissions from marine diesel
engines is regulated through a three-tier system. The less rigid Tier 1 applies to ships
built on or after 1 January 2000, Tier 2 for ships built on or after 1 January 2011, while
the most demanding Tier 3 regulates NOx emissions from ships built after January 2016,
or 2021, and operating in ECAs [10]. It is expected that the measures for SOx and NOx
should also reduce the quantity of PM and VOCs released into the atmosphere. Regarding
the mitigation of GHGs, the IMO added a new Chapter 4 to MARPOL Annex 6, which
provides two important measures. In the first one named the Energy Efficiency Design
Index (EEDI), it is required for new ships to comply with minimum mandatory energy
efficiency performance levels, increasing over time through different phases [11]. The Ship
Energy Efficiency Management Plan (SEEMP) is an operational measure that establishes a
mechanism to improve the energy efficiency of a ship in a cost-effective manner [11].

However, regardless of the numerous revisions to MARPOL Annex 6 and the contin-
ued application of more stringent emission control regulations, the IMO has recorded an
increase in overall GHG air pollution from ships [12]. It was noted that, from 2012 to 2018,
emissions of CO2, NOx SOx, PM, CO, VOC, and CH4 increased by 5.6%, 1.2%, 5.5%, 3.5%,
10.2%, 7.6%, and 151%, respectively [12]. This rise of ship-related air pollutant volumes
released into the atmosphere is mostly connected to the growth rates of fuel consumption
due to increased shipping demand [12]. Although overall carbon intensity has improved
by 20–30% over the same period, the study also stated that it will be difficult to achieve
the IMO’s GHG reduction goal of 50% by 2050 [12]. Therefore, countries should anticipate,
prepare for, and adapt to climate change by fully understanding the risks, exposure, and
vulnerabilities [13].

With the same tendency, but focusing on the regional aspect, the European Sea Ports
Organisation (ESPO) has recognised the problems of air quality, climate change, and energy
efficiency in the port sector of the European Union (EU) as three of the most important
environmental priorities [14]. Ports account for a small share of global maritime traffic
emissions, but their function as major transport hubs leads to intensive shipping activity
and thus to a corresponding emission of air pollutants. Port-related emissions from ships
engines have strong spatial and temporal significance that directly affects air quality in
port communities. Considering that 90% of European ports are spatially connected to cities,
the magnitude of air quality degradation is even more serious [14,15].

Although all EU countries are required to monitor their emissions under the EU
Climate Monitoring Mechanism, and the European Environment Agency (EEA) compiles
national inventories in accordance with the Intergovernmental Panel on Climate Change
(IPCC) guidelines, emissions from maritime transport, particularly in port areas, are still
vague in some regions [16–18]. An example of unclear monitoring of air pollution from
shipping can be observed in Croatia. In the latest Croatian GHG inventory, general fuel
consumption (Tier 1 method) was applied to estimate emissions from navigation, but
without spatial, temporal, or technical details [19]. The Croatian part of the Adriatic coast
is 1777 km long and has six ports of international economic importance open to public
traffic, where most of the 359,223 arrivals of various types of ships were recorded in pre-
pandemic 2019 [20,21]. Thus, it is necessary to obtain a better insight into air pollution from
the maritime sector, especially in port areas with large communities [4,22–24]. Moreover,
emission inventories should quantify not only GHG but also other pollutants that may
compromise the health of the port-city population.

That is why the importance of high-resolution shipping emission inventories for port
areas is recognised by both the port and scientific communities [14,15,23–27]. The results
of a detailed air pollution study should reveal more accurate emission levels that can be
used as a basis for analysing impacts on the port community, leading to the establishment
of better environmental measures. However, to calculate quantities of air pollutants with
higher accuracy, a bottom-up energy-based method should be applied on large datasets
that contain relevant shipping information. IMO Regulation V/19, which requires the
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installation of an Automatic Identification System (AIS) on merchant ships of 300 GT (GT)
and all passenger ships, has made near real-time data on ships and their movements
available [1]. Accordingly, an increase in bottom-up energy-based gas emission inventories
for ports has been noted, suggesting that by combining high-resolution data with the
appropriate methodology, it is possible to obtain coherent estimates of air pollution from
ships in ports [15]. The systematic review showed that the bottom-up approach was
used frequently in papers analysing ship-related emissions in 80 different ports, with the
energy-based method being predominantly applied [15]. However, as bottom-up approach
requires large databases, calculating emissions is a complex and time-consuming operation,
especially when estimation is not systematically processed.

Therefore, the focus of this research was to develop an adaptable and relevant ana-
lytical model capable of integrating a comprehensive methodology with large amounts of
shipping data to produce clear ship-related emission estimates in large port areas. Con-
sidering the lack of research in Croatia that includes the mentioned approach and the
insufficient monitoring of air pollutants in ports, the model was used to develop an initial
overall emissions inventory for the Port of Split, the busiest passenger port in Croatia.
The inventory with high temporal-spatial resolution can be used as a basis for developing
strategies to control emissions. In the model, the bottom-up approach and the energy-based
method were applied to detailed technical and near-real-time shipping data from the AIS
to calculate levels of air pollutants released by ships in the City port area. Throughout
the three-step process, estimates of CO2 and CH4 as GHGs and SOx, NOx, PM10, PM2.5,
NMVOC, and CO as APSs were determined on a ship-by-ship basis for the entire year of
2019. Exhaust gas volumes with relevant data on the production of air pollutants from
marine engines are stored and can be handled by the model to generate various analytical
results. The model was therefore able to produce a novel, high-density, activity-based
ship emissions spatial distribution map, together with a detailed overview of technical,
temporal, and operational aspects. In addition, a unique differentiation of ship types was
developed to ensure proper and effective imputation of missing data while providing the
background for a future extension of the model’s predictive capabilities.

2. Materials and Methods

The methodology for estimating ship-sourced gas emissions in port areas applied
in this research is based on a comparative analysis of relevant papers and studies within
the PRIMSA approach and meets the requirements of the IPCC guidelines [15]. The
mentioned paper stated that the bottom-up energy-based methodology is most reliable
for estimating ship-sourced gas emissions in port areas since it requires a high level of
input parameters [15,23]. Since this approach enables calculation on a ship-by-ship basis by
combining energy output with emission factor (EF) and time, large databases that contain
specific technical data on the ships and detailed information on movement activities need
to be used. Static technical data on the details of the ships and their engines describe
components for the emission calculations, such as main/auxiliary engine power (PME/AE),
engine function, engine type, and fuel type [15]. Dynamic data on ship MA is categorised
by the operational mode of the ship’s propulsion and generator systems and defined by the
percentage of ME and AE working load expressed as LF [15]. Considering that the specific
workload of the engines has a direct influence on the emission production, the time spent
in cruising, manoeuvring, and hoteling activities must be taken into account. As the central
and most complex segment of the emissions quantification process, EF depends on both
static data on engine function, speed, engine type, and fuel type and dynamic information
on the characteristics of the ship’s activities [15]. Therefore, the bottom-up energy-based
methodology expressed in Equation (1) that contains key factors proposed in the systematic
review is implemented in the emission estimation model presented within Figure 1 [15].

E = (PME × LF × EFME + PAE × LF × EFAE) × T × CF (1)

where the following definitions apply:
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E: E missions quantity by mode for each ship call—in grams (g);
PME/AE: total power of main engines/auxiliary engines—in grams per kilowatt hour

(g/kWh);
LF: load factor expressed as actual engine work output—as a percentage of engine

power (%);
EFME/AE: emission factors of different pollutants in regard to engine function, engine

type, fuel type, and installation year—in grams per kilowatt hour (g/kWh);
T: time spent in a certain movement activity—in hours (h);
CF: correction factor for emission reduction technologies—constant.
The model for ship-related emissions estimation in ports has three complex and

interconnected phases. In the initial preprocessing stage, data collection was carried out
with recourse to several databases. The data from AIS had to be cleaned and converted
from ‘raw’ format into a readable comma-separated values (CSV) file in order to be merged,
filtered and structured together with the static technical data. Methods for ship type
differentiation and emissions estimation were then applied on formatted technical and
activity data as a part of the processing phase. Lastly, in the postprocessing phase, output
data was stored and handled, aiming to create spatial and temporal visualisations of
shipping emissions.
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The dynamic AIS data was transferred through Python, while the handling and
analysis were carried out using the RStudio 2023.09.1+494 software package. Within the
grey box that contains technical features, MMSI stand for Maritime Mobile Service Identity,
GT for gross tonnage, D for diesel engine, GTU for gas turbine, STU for steam turbine,
DF for dual fuel, SS/MS/HS D for slow-/medium-/high-speed diesel engine, HFO for
heavy fuel oil MDO/MGO for marine diesel/gas oil, LNG for liquified natural gas, and
MCR for maximum continuous rating. MCR is defined as the manufacturer’s tested engine
power [28]. Usually, a ship operates at the nominal continuous rating, which is 85% of the
90% of MCR [26]. Inside the dark blue box, NMEA stands for National Marine Electronics
Association sentence format.

Considering that the aspects of the main data processing components of the model
are based on universal characteristics that have a significant effect on the production of air
pollutants, it can be concluded that the model is not restricted to one case study and can be
applied to different ports. Also, the flexibility of the model structure allows the inclusion of
new insights and other aspects relevant to the port-based shipping emissions, expanding
the quality and scope of the final output.

It is important to add that large quantities of technical data have enabled a specific
differentiation of ship types based on the analysis of multiple characteristics. This feature
allowed for more accurate and effective missing-data imputation and provided a basis for
future expansion of the model’s capabilities in emissions forecasting and scenario building.

2.1. Maritime Traffic, Spatial and Temporal Specifications

To determine the exact databases for the emission calculations, the temporal, spatial,
and transportation characteristics of the research area must first be defined and analysed.
As it was stated, the modelling of emissions was conducted by relying on historical data on
shipping traffic in the Port of Split—City port basin in 2019.

The Port of Split is one of the busiest ports in the Mediterranean in terms of passenger
and vehicle traffic, while cargo traffic remained within the bounds of local importance. For
example, in 2019, the busiest year on record, 5,607,789 passengers and 829,594 vehicles were
transported, but only 2,913,509 tonnes (mt) of cargo was transferred [29]. The distribution of
maritime traffic is thus almost exclusively concentrated on various types of passenger ships,
mainly Ro-Ro ferries, high-speed craft, cruise ships, and pleasure craft, which account for
almost 90% of arrivals.

Spatially, the Port of Split is divided by the city of Split into two dislocated areas. One
area, called North port, is situated on the northern side of the Split peninsula and consists
of several basins, mainly for cargo ships. City port basin forms the second part of the port,
which is intended for passenger ships and where, on average, about 90% of all maritime
traffic is handled. The City port is located in the southern part of the Split peninsula,
where it is spatially and infrastructurally integrated into the city centre, what can be seen
in Figure 2. Due to the locational connection with the urban environment, high traffic
density of City port and the fact that Split is the second most populated Croatian city, air
degradation can represent a serious threat to public health. The city’s connection with the
Adriatic islands and the Apennine Peninsula via numerous shipping lines and its popularity
as a cruise and tourist destination with a growth trend further emphasises the need for
monitoring and control of pollutants from maritime traffic. Thus, this study focuses on the
area of the City port with the aim of estimating and analysing ship-induced air pollution.
The research area with the relevant coordinates is shown in Figure 3. The dynamic AIS data
was transferred through Python, while the handling and analysis were carried out using
the RStudio software package (https://www.r-studio.com/data-recovery-software/).

https://www.r-studio.com/data-recovery-software/
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Part of the area of the North port is marked in yellow, while the City port basin is in
red. The grey area in between represents the urbanised parts and the locational connection
of the City port with the town centre. Note: the map was generated with the RStudio
software package and then modified.

2.2. Defining Input Databases—Technical Data and Activity Data

Based on the name, type, and MMSI number as identifiers, a database of technical
information about ships and their engines was created by collecting attributes from the
Croatian Registry of Shipping (CRS), the Croatian Integrated Maritime Information System
(CIMIS), and web data (WD) from relevant shipping companies. Gathered data refers to GT,
length, breadth, year, MA power, AE power, engine type, engine speed, fuel type, maximal
speed at MCR, and relevant emission mitigation technology. Considering that several data
sources were used, it was possible to corroborate mentioned information, and where data
was redundant, the CRS database was prioritised.

The primary function of AIS is to ensure higher level of navigational safety by sharing
timely information on ship characteristics and their movement between other vessels and
the shore [30]. However, both static and dynamic data transmitted by AIS provide a
detailed overview of ship movements and their characteristics, which is more often applied
in emission estimation process [15,23]. Therefore, the AIS database that contains relevant
shipping data applied in this research was provided by the Faculty of Maritime Studies
in Split. Generally, the static data broadcasted through AIS refers to MMIS number, IMO
number, ship type, length, name, and call sign [31,32]. Dynamic data on ship movement
reveals the position of the ship, the timestamp, the course over ground (COG), and the
speed over ground (SOG) [30,32]. As the AIS dataset does not contain all features required
for the estimation of emissions, such as engine details or LF, only dynamic data was used,
while static information represented by the above identifiers was included in the data
merging process.

2.3. AIS Dataset Conversion and Filtering

A prerequisite for the integration of technical information with activity details is the
conversion of the AIS data. AIS operates in the very high frequency (VHF) mobile maritime
band or uses satellite communication for broadcasting messages in NMEA sentence for-
mat [33]. NMEA files are in ‘raw’ encoded form and as such are not readable by statistical
data processing software. Therefore, a specific Python script was developed and integrated
inside the model to convert the ‘raw’ data from AIS into a readable CSV format. Consider-
ing that the use of AIS is not limited to ships nowadays and that the AIS station used in this
research covers a larger area than necessary, both spatial and non-ship filters were included
in the script. As a final result of the AIS data preparation, timestamps with current speed,
position, and course were extracted together with the corresponding identifiers for each
transmitted point of each vessel that passed through the selected area in 2019. Since AIS
generally generates and shares data every few seconds, 71,638,920 entries were obtained
and taken into account for further preparation. Although processing a database of this size
is very time-consuming and computationally intensive, it provided the basis for identifying
emissions with high spatial and temporal density.

2.4. Data Preparation

In the last step of the preprocessing phase, the RStudio software package was used
to develop code that enabled the cleansing, filtering, formatting, and merging of data.
Cleansing was applied on AIS datasets, aiming to exclude duplicate and faulty data. In
this process, entries missing identifiers and/or all particulars were screened out. Ships
that passed through the interest area but did not arrive at the designated port basin
were filtered out. The same principle was applied to the entries or the entire movement
tracks with abnormal values for speed (more than 40 kt), position, and/or time. After
eliminating inadmissible datasets, 49,540,895 entries were used for the research. Given that
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the technical and activity datasets were collected from several sources, their structure had
to be formatted to establish a standardised form. Once a consistent display of the cleansed
and filtered data was achieved, the specific technical details of each vessel were merged
with all corresponding activity entries recorded in 2019 by linking the unique identifiers.
Performing all the mentioned steps of the preprocessing phase within the model enabled
emission estimation on a ship-by-ship basis, but also the implementation of the specific
differentiation of ship types.

2.5. Ship Types Differentiation and General Characteristics

The two main functions of differentiating ship types based on the analysis of multiple
characteristics are to ensure more accurate and effective imputation of missing data while
also providing a basis for future expansion of the model’s capabilities in emission forecast-
ing and scenario building. Although AIS datasets already contain predefined information
on ship type, their characteristics can vary considerably. This refers in particular to the
ship’s dimensions (GT, length), the MCR speed, engine details (power, type, speed), and
also to the function of the ship. Thus, the ship type differentiation had to be performed in
two steps.

Throughout the analysis of AIS datasets, it was found that most ship types were
categorised in general terms (e.g., passenger, cargo, tanker, fishing) without additional
information on the function of the ship (cruise ship, Ro-Ro, ferry, etc.). Therefore, as a first
step, the ships were divided into specific groups according to their main function. However,
large oscillations in technical and engine details were found in some categories. A good
example is to compare two cruise ships, one of which had 2995 GT and an ME power of
2460 kW, while the other had 90,940 GT and an ME power of 50,000 kW. To create categories
of ships with similar technical characteristics, certain types of ships were differentiated by
applying the probability distribution to multiple characteristics that showed significant
fluctuations. As a result of the second step, 11 specific ship types were identified based on
the collected data:

• Large cruise ships;
• Medium cruise ships;
• Small cruise ships;
• Large Ro-Ro ferries;
• Ro-Ro ferries;
• High-speed craft;
• Excursion ships;
• Fishing;
• Tug;
• Pleasure craft;
• Sailing.

By subdividing categories of ships, it was possible to perform more specific and
effective missing-data imputation. In this process, average values from corresponding
group of ships were assigned to the features where data was missing. After operating the
model, the imputed data displayed low level discrepancy, which allows for a more accurate
estimation of emissions, even when all data is not available.

2.6. Emissions Estimation

In the last step of the processing phase, the model uses bottom-up logic where reference
points are combined into specific movement trajectories to calculate the complete amount
of air pollutants emitted during individual visits to the port basin for each ship included in
the study. This way, the model is able to produce detailed estimates for each individual ship
with high temporal and spatial density by applying the energy-based emission estimation
method. However, throughout the port approach and departure operations, ships have
to alter their speed, which leads to a change in the energy output of the engines, and
consequently, to a trend in the production of air pollutants. Therefore, in order to estimate
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emissions based on energy demand, the operating modes with the time spent in them were
determined for each trajectory.

2.6.1. Estimation of the LFs and Operating Modes

It is generally accepted that different rates of engines working load have direct impact
on internal combustion processes that are responsible for releasing air pollutants into
an atmosphere [12,34]. Some studies suggest that engines are the most efficient when
operated at around 80% load and are not as efficient at lower loads. This applies in
particular to LF of less than 20%, which are normally achieved when ships are preparing
to berth or depart and are manoeuvring at low speed. Due to the mentioned low-load
effect on engine efficiency, the model recognises three distinct modes of operation: cruising,
manoeuvring, and hoteling. As the cruising mode is identified by engine loads above 20%
and manoeuvring is defined with LF values that are lower, hoteling operation is considered
when the ships have switched their ME off and only use the generators while at berth or at
anchor. Since the load of the ME correlates with the speed, the collected AIS and technical
data were used in the propeller law method expressed in Equation (2) to estimate LF and
define the related operating modes for each trajectory, while the corresponding timestamps
were used to calculate the operating time [12,34].

LF = (SA/SM)3 (2)

where the following definitions apply:
SA: actual speed of the ship—in knots (kt);
SM: speed of the ship at MCR—in knots (kt).
Although the workload of the ship’s generators corresponds to the specific power

requirements of the operating modes, it is not possible to anticipate it through the propeller
law or similar methods, which is why the LFs of the AEs are generally vague [22–27]. In
the absence of a specific study on AE workloads on ships navigating within the area of
interest, static LF values from several large-scale studies and papers with similar traffic and
spatial specifications were used [4,17,34].

2.6.2. Estimation of the EFs

As was stated, energy conversion in marine engines is a complex process with a
number of variables that directly affect the production of air pollutants and may vary for
different gases. Therefore, to calculate exact EFs for particular engines and the fuel they
consume in specific operation modes, onboard measurements should be carried out, which
requires specific research to be conducted on this topic. Since such studies are financially
and logistically costly, the identification of the EFs is the vaguest area in the emission
estimation process [12,15,22,23,25–27]. Therefore, in this study, collected technical data was
combined with the estimated operating modes in comprehensive methods to determine the
corresponding EF and connect them to the relevant reference points. The components used
for identifying EFs are listed in Table 1, while the low-load adjustment values for all gases
(except for NOx) included in the study were taken from the San Pedro Bay Ports Report
and applied when the ships were operating in manoeuvring mode [34].

Table 1. Technical data and operating modes included in the model for EF identification.

EF Components

Engine Function Engine Type Engine Speed (rpm) Fuel Type Mode and LF

ME D SS D < 300 MDO/MGO Cruising LF ≥ 20%
AE GTU MS D 300–900 HFO Manoeuvring LF < 20%

STU HS D > 900 LNG Hoteling LF ≤ 02%
DF
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Emissions of CO2 and SOx are directly proportional to fuel consumption. Thus,
specific fuel consumption (SFC) load was calculated by applying the method from the third
IMO GHG study and baseline values from the recent fourth IMO GHG study, as is shown
in Equation (3) [12,35].

SFC load = SFC baseline × (0.455 × LF² − 0.71 × LF + 1.28) (3)

where the following definitions apply:
SFC load: SFC at a given engine load—grams of fuel consumed per kilowatt-hour

(g/kWh);
SFC baseline: efficient SFC for a particular engine—engine load optimised at 80%.
After determining the SFC of engines under optimal and low-load conditions by

applying LF values from 0 to 1, it was possible to determine CO2 and SOx EF based on fuel
usage. However, since the model developed in this study uses an energy-based logic, the
methods presented in the fourth GHG study for calculating the EF for the mentioned gases
had to be modified. For CO2, a non-dimensional conversion factor (Cf) measured in g of
CO2 emitted per g of particular fuel consumed was taken from the MEPC.308(73)—2018
EEDI Guidelines [36]. As the Cf corresponds to the fuel used when determining SFC,
Equation (4) was established to transfer the CO2 EF from a fuel- to energy-based measure.

CO2 EFe = SFC × EFf (4)

where the following definitions apply:
EFe: energy-based emission factor—grams of pollutant emitted per kilowatt-hour

(g/kWh);
EFf: fuel-based emission factor equal to Cf—grams of pollutant emitted per g of fuel

consumed (g pollutant/g fuel).
As an air pollutant, SOx emissions vary with the sulphur content of the fuel and

accordingly to fuel consumption. Therefore, Equation (5) presented in the fourth GHG
Study was combined with Equation (4) to convert EFf of SOx to Efe [12].

SOx EFf = 2 × 0.97753 × S (5)

where the following definitions apply:
S: sulphur content of a particular fuel — grams of pollutant per g of fuel (g pollutant/g

fuel)
Since the EU Sulphur Directive applies to the area included in this research, the limit

value of 0.1% sulphur content was taken into account when calculating the SOx EF [37].
Emissions of PM are a function of fuel sulphur content, where it is assumed that 97.753%
of the sulphur in the fuel is converted to SOx and the rest to sulphate/sulphite aerosol,
classified as a part of PM [12]. That is why both S and SFC had to be determined and
applied inside Equation (6) to estimate PM10 EFe. Assuming that 92% of PM10 is actually
PM2.5, Equation (7) was used [12].

PM10 EFe = 0.23 + SFC × 7 × 0.02247 × (S − 0.0024) (6)

PM2.5 EFe = PM10 × 0.92 (7)

Emissions of NOx, CH4, CO, and NMVOCs vary depending on engine load; therefore,
only values for low-load adjustment were used as stated before, without conversion of
EF applied for CO2, SOx, and PM. A set of EFs values for CO and NMVOCs described
in the third IMO GHG study are applied, while for CH4, new insights presented in the
fourth GHG Study were implemented [12,35]. This applies particularity to LNG fuel used
by different marine engines [12]. The values of EFs for NOx emitted by diesel engines are
limited by a three-tier system defined in IMO MARPOL Annex VI Regulation 13 (IMO,
2013b), where the EF of each tier is subdivided in relation to engine speed and construction
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date [38]. Since the NOx control requirements apply to installed marine diesel engines with
an output power of more than 130 kW, values from the regulation corresponding to the
technical data of ships were used as the NOx EFs in this research.

3. Results

The model performed an estimation of ship-related emissions based on relevant
technical details and 49,540,895 AIS reference points that were previously processed with
the aim of defining individual movement trajectories with respective operating modes and
EFs. By combining the presented bottom-up logic with a relevant energy-based method, the
model was able to produce high-density estimates of air pollutants released by individual
ships for every port visit in 2019. Emission estimates for each port visit with all relevant
features of individual ships are stored and can be handled by the model to generate various
analytical results.

According to the processed data from AIS, the number of ships calling at the Port
of Split—City port basin in 2019 was 16,429. This number corroborated the port traffic
statistics, since the movement trajectories, such as datasets that represent port visits, form
the basis for calculating emissions. The quantity of calls identified was found to match
maritime transportation data with 100%, 98%, 95%, 96%, and 94% for all types of cruise
ships, both types of Ro-Ro ferries, high-speed craft, tugs, and fishing ships, respectively.
However, the arrival figures for excursion ships, pleasure craft and sailing ships were
reported differently in the various sources of shipping statistics data and could not be
compared as the other ship types. There is, therefore, a possibility that the emissions
released by the mentioned ship types are greater than estimated in this research. The
explanations for the discrepancies mentioned are explained in the section Uncertainties,
while the distribution of port calls per ship type determined from the AIS database used in
this research is shown in Figure 4.
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On all included ships, the most common engine type installed is a MS D engine (78%),
followed by a HS D (22%) and a LS D (3%). GTU, STU, and DF are fitted on less than 1%
of ships and therefore have no significant impact on emissions in the research area. With
regard to the presented overview of engine details and the application of the EU Sulphur
Directive, it is assumed that the entire fleet uses MDO/MGO with the limit value of 0.1%
sulphur content during the entire port call.

3.1. Gas Emissions Quantification

The model was used to create an inventory of air pollutants generated by ships in
the defined port area by summing the emissions from each movement trajectory for each
ship, then for specific types of ships, and finally for the entire fleet. The annual emissions
quantified with the model for the Port of Split—City port basin in 2019 are presented in
Table 2 as totals for each ship type and released gas. In the comparison, the emissions per
ship type match the distribution of port visits only for Ro-Ro ferries and high-speed craft,
while a significant deviation can be observed for the other groups. The reason for this lies
in the technical requirements of the propulsion and generator systems on board and the
different energy demand of the individual ship types.

Table 2. Annual emissions quantified by the model for the Port of Split—City port basin in 2019
expressed in mt.

Ship Type GHG APS
CO2 CH4 SOx NOx PM10 PM2.5 NMVOC CO

Ro-Ro ferry 19,734.524 0.345 11.694 297.449 6.484 5.966 16.857 12.132
High-speed craft 5962.247 0.105 3.533 85.349 1.945 1.789 5.475 5.037

Large Ro-Ro ferry 4697.735 0.088 2.782 86.684 1.619 1.490 4.085 0.698
Large cruise ships 4276.095 0.080 2.532 77.546 1.471 1.354 3.617 0.772

Medium cruise ships 4160.025 0.077 2.464 75.264 1.427 1.313 3.509 0.821
Excursion ships 1431.938 0.033 0.849 26.338 0.526 0.484 1.870 0.836

Small cruise ships 1156.656 0.020 0.685 16.751 0.378 0.348 0.899 0.838
Pleasure craft 525.652 0.013 0.312 11.866 0.203 0.187 0.777 0.173

Fishing 351.700 0.007 0.208 4.610 0.117 0.108 0.350 0.331
Tug 135.243 0.003 0.080 1.770 0.049 0.045 0.167 0.141

Sailing 30.074 0.001 0.018 0.739 0.011 0.010 0.038 0.007
Totals 42462 1 25 684 14 13 38 22

The effects of the different groups of ships on air pollution in the port area are therefore
shown in Figure 5. By examining presented overall impact of specific ship types, it can be
noted that Ro-Ro ferries contributed an average of 47% of all estimated emissions, while
the average share of gases released by high-speed craft is 15%. Large Ro-Ro ferries and
large- and medium-sized cruise ships have a general share of 10%, while all other ship
types combined are commonly below 10%, leading to the conclusion that their impact on
air pollution is of limited importance.

However, the connotations of GHG and APS emissions should be considered sepa-
rately, as the first group has a global impact on climate change, while the second group
poses a direct threat to human health on local scale [39].
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3.1.1. Greenhouse Gases (GHGs)

The reason why CO2 is the predominant GHG in the port area, with a share of more
than 99.99%, is due to the almost exclusive use of MDO/MGO by the fleet, which is
primarily powered by diesel engines. The amounts of CH4 released annually are therefore
insignificant but could increase given the global trend towards the introduction of LNG-
powered ships. As depicted in Figure 5, the GHG emissions of Ro-Ro ferries are roughly
equivalent to those of High-speed craft, large Ro-Ro ferries, and medium and large cruise
ships combined. To mitigate annual CO2 emissions in the relevant area of the City port
basin, the focus should therefore be on operational and technical measures aiming to
increase the energy efficiency of ships which contribute most to GHG pollution.

3.1.2. Air Pollutant Substances (APSs)

At 86%, the amount of NOx emitted by ships accounts for the largest share of the
total APS released. The cause for the larger NOx levels could be in the engine speed and
the age of the fleet, which are particularly high in the most active ship types. Mentioned
engine details are directly related to the tier system, which assumes larger EFs, resulting
in the amount of emissions stated. The modernisation of liners and the introduction of
exhaust gas reduction technologies such as selective catalytic reduction would be beneficial
to mitigating overall NOx levels. Annual total of SOx is not severe since the 0.1% sulphur
content was applied in the estimation process. However, the specified limit was based
on an assumption that entire fleet used low-sulphur fuel for the entire period of arrival,
berth, and departure. However, according to the EU Sulphur Directive, fuel changeover is
mandatory only after arrival at berth, and since data on the content of the fuel used was
limited, it is possible that SOx emissions are higher than estimated through the model [37].
The same conclusion can be drawn for PM 2.5 and PM 10 emissions, as it is assumed that
sulphur not converted to SOx is released as PM [12]. As products of incomplete combustion
of fuel, both CO and NMVOC are part of the total APS emissions. The estimated NMVOC
values correlate with the predominant passenger ship types found in the research area, as
this pollutant is generally produced primarily by evaporation from takers [40]. Higher
CO emissions, especially for Ro-Ro ferries, can be explained by longer periods of low-load
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operation associated with the partial combustion process, which indicates the application
of a higher EF in the estimation [12].

3.2. Operating Modes and Spatial Distribution

A general overview of the emissions produced in the different operating modes
indicates that 59%, 8%, and 33% were released in cruising, manoeuvring, and hoteling
activity, respectively. However, this fact varies considerably with the different types of ships,
which is shown in Figure 6. On an annual basis, Ro-Ro ferries, high-speed craft, excursion
ships, pleasure craft, and sailing ships emitted most of the pollutants during cruising
activity. On the other hand, all types of cruise ships and large Ro-Ro ferries produced larger
volumes of emissions during the hoteling phase, while for tugs, the manoeuvring mode
was dominant.
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This insight is particularly valuable for future mitigation planning based on character-
istics associated with a particular operating mode. It is also important to note that APSs
emitted near urban areas have a greater impact on local air quality. That is why the model
was used to produce the unique high-density spatial distribution of emissions based on
activities to provide an overview of the main air pollution dispersion points quantified
on an annual basis for each type of ship, as is depicted in Figure 7. The figure shows that
59% of emissions released in cruising activity are within a radius of 13 NM, while 41%
(manoeuvring and hoteling emissions combined) are mostly concentrated in an area with a
maximum distance of 0.5 NM from the city centre.

The divergence found between the points of emission generation for different modes
for Ro-Ro ferries and large cruise ships is shown in Figure 8 with a radius of 1 NM from the
spot where most emissions are released. This map shows even more detailed information
about the air pollutants released, as it displays the total values for each visit with a colour
scale, where green stands for lower emissions and red for higher emissions, revealing
the proximity of air pollution production points to the populated area. In addition to the
aforementioned difference between emission production in various modes, the variance
in the emission quantities released by two types of ships is also shown. For example, the
legend in the top right corner of the map suggests that large cruise ships released anywhere
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from 35 to 45 mt of air pollutants in hoteling, while Ro-Ro ferries released 1.2 mt while
operating in cruising mode.
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3.3. Temporal Distribution—Seasonality

The increased demand for shipping services is strongly connected to the tourist season,
as this industry is a major source of income for the local economy. Therefore, a higher
volume of emissions was generated during the summer months, which correlates with
seasonal traffic intensity. Since the different types of passenger vessels are predominant in
the transportation mix, both GHG and APS production show almost the same trend, so
their temporal distribution over the twelve-month period with annual average for 2019 is
shown in Figure 9. It can be observed that there is a particular difference between months
in which the average emissions were significantly exceeded and those in which they were
approximately the same or lower. In this case, the months in which the recorded values
are above average individually had emissions more than twice as high as months from
the rest of the year. This difference is particularly significant for July, when emissions are
generally three times higher than those estimated for January, February, March, November,
or December, and almost double the annual average of 3605 t.
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Based on the analysis of intra-month variations, we propose considering two annual
periods: a season when emissions are higher than the annual average and an off-season
when emissions are low or close to average. Considering this, emissions are expected to
increase with projected demand from tourism and shipping industry, resulting in higher
concentrations of APSs in a shorter timespan, elevating the risk to the health of local
population. Therefore, optimisation of emissions at peak periods should be considered,
with the goal of achieving moderate values closer to the annual average.

3.4. Uncertainties

The uncertain aspects induced in this research that directly affect the level of estimated
emissions are addressed in the relevant chapters. However, to provide a better overview of
the unclear elements, they are examined in the following subsections.

3.4.1. AIS Data

Since the IMO Regulation V/19 states that not all ships are required to have AIS on
board, a proportion of marine traffic remains invisible [1]. As this applies in particular to
smaller ships that have only a minor impact on air pollution, it is assumed that the emission
totals are not significantly higher. However, the technical and human errors that usually
occur when the AIS is operated can lead to data loss during transmission/storage or to
erroneous values which were filtered out of the database used for emission calculation.
Thus, in this research, port calls estimated based on AIS data have been cross-checked with
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shipping statistics databases where applicable. It is therefore possible to assume emission
levels based on the difference between port calls and add them to the calculated totals.

3.4.2. Unknown Technical Details

The imputation of missing data was based on linking ships with an incomplete data set
to the corresponding ship type and calculating average values for attributes with unknown
information. This procedure was applied to all ships whose technical data were incomplete.
Since the databases used in this research contained, on average, less than 10% of unknown
information on technical characteristics per ship type and a specific differentiation of ship
types was made, the imputed data show little differentiation.

3.4.3. LFs

While the LFs of the MEs were calculated on the basis of the propeller law, the same
method was not applicable for estimating the workload of generators. As there was no
research or database that would provide values on LFs of AEs operated in interest area,
static values from several large-scale studies and papers with similar traffic and space
specifications were used for the workload values of the AEs.

3.4.4. Fuel Composition

Even when the fuel type used by ships in the navigating area is known, the composition
of the fuel may vary for each supply of the same product. Therefore, fuel composition
assumptions were made based on the regulations in force in the research area and the
details of the engine.

3.4.5. EFs

As the most complex feature that is dependent on both technical and movement
characteristic, EFs can be described as the component with the highest level of uncertainty.
Since the specific research on EFs involving accurate data on the engine details, fuel
composition, and its consumption or workload in specific mode was not conducted on the
ships operating in the research area, the EFs values have been calculated on the basis of
comprehensive methods applied to the collected data.

3.4.6. Weather Conditions

Sea and air temperature, wind, currents, and wave force and direction can significantly
affect fuel consumption/engine load, leading to a change in EF values and consequently
emissions released by the ship. As the vessels operating in the area included in this research
do not navigate in extreme weather, the influence of the mentioned conditions is limited.
Also, LF values for AEs are assumed based on temperature fluctuation between warmer
and colder periods, which is specifically important for passenger ships [4]. However, in
future work, and for different areas, the model should include meteorological data.

4. Discussion

The annual inventory of emissions released by ships in the relevant port area, produced
by the model developed in this research, provided an overview of technical, temporal,
spatial, and operational aspects. Presented results are based on calculations applying
relevant methodologies to a large AIS database and detailed technical data, and thus can
be used for establishing broad guidelines for emissions management in port.

However, mentioned insights have a general standpoint and as such do not include
the aspect of equivalence between the emission-related characteristics of different ships or
port areas. For example, Ro-Ro ferries were identified as the ships that emit the greatest
amount of air pollutants overall, especially when operating in cruising mode. To achieve
this, they had to account for almost 50% of the total port visits. On the other hand, large
cruise ships released more than four times less emissions, most of them in the hoteling
phase, but only for a fraction of the total arrivals. The difference in emission production and
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quantities also varies with the observed period and changes the proportion of air pollutants
released between the ships. In order to introduce strategies for control of the emissions, all
aspects must therefore be examined and considered, which can be a computational and
time-consuming process as large databases and connections between different factors need
to be analysed.

Furthermore, the volumes of calculated emissions are not comparable, even for the
same ports, as the inventories often apply different methods and datasets for emission
calculations [15]. A comparison of the gas volume would therefore not describe the
relationship between the measurements in a meaningful way [15]. Even if the same method
was used in the same area of interest, all factors and datasets used for the calculations
must be consistent in order to obtain comparable emission results [15]. The most obvious
examples of the discrepancies mentioned can be found in the values for gas types, ship
types, EFs, LFs, or transit distances [15].

The lack of specified comparability between ships and ports is common in emissions
inventories aggravates the process of an appropriate assessment of insights into the pro-
duction and effects of air pollution from ships [15]. Therefore, the introduction of a scalable
system based on the analysis of emissions-related data from inventories could provide a
more transparent and efficient overview of the important characteristics of air pollution
from ships and port areas. The application of the above system may serve as a coherent
framework for the control of air quality in port communities.

Since the model presented in this research already integrates a large database of
emission features with calculated results, it is possible to extend its capabilities by including
a comparison logic in future work.

5. Conclusions

In this research the analytical model for estimation of ship-sourced emissions was
developed and used to produce an inventory of combustion gases released in the area
relevant to the Port of Split—City port basin for 2019. To estimate emissions of GHGs and
APSs, technical details and ship movement data from AIS were integrated inside the model
where bottom-up logic with an energy-based method was applied. Therefore, to obtain
a high-density overview of emissions, the modelling was carried out using three main
interconnected components.

First was the preprocessing segment, where the technical and AIS datasets were
prepared by applying conversion, cleansing, filtering, formatting, and merging techniques
to create the specific data arrangement of features relevant to the ship-based emission
estimation.

In the second, the processing component, unique categories of ship types were defined
based on different classifiers to ensure a more accurate and effective imputation of missing
data, while also providing the background for a future extension of the model’s predictive
capabilities. Estimates were then made of the GHG and APS quantities released for all
ships recorded in the AIS database for the year 2019 within the research area.

Finally, the results produced by the model show that 42462, 1, 25, 684, 14, 13, 38, and
22 mt of CO2, CH4, SOx, NOx, PM10, PM2.5, NMVOC, and CO were emitted from ships in
the relevant area of the Port of Split—City port basin, respectively. It was noted that most
annual emissions are generated during the tourist season, as this period has the highest
frequency of port calls. Because of the high arrival rate, Ro-Ro ferries were identified as
the ship type that emitted the largest amount of air pollutants, while C activity was the
dominant mode of operation for emission production overall.

Emission estimates with all datasets containing information on characteristics that
are important for the production of air pollutants are stored and can be handled by the
model to generate various analytical results. Therefore, the model was able to produce
detailed inventory and reports with various statistical features that can be used by experts
and decision-makers for managing emissions in port areas. Furthermore, as the structure
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of the model’s components is flexible and an adaptable approach to database imputation is
taken, it is possible to extend its potential by pursuing the following:

• Modelling emission estimates for different port areas by integrating location-specific
AIS data and technical details of related ships.

• Applying new insights, mainly named in the chapter on uncertainties, to the produc-
tion of combustion gases from marine engines with the aim of obtaining even more
accurate calculations.

• Introducing a scalable system to provide a more transparent and efficient overview of
the important characteristics of air pollution from ships and port areas.

• Extending predictive capabilities by relying on large shipping databases to create
scenarios for the future development of air pollution from the fleet in a specific
port area.
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Abstract: Seaports, as major transportation hubs, generate significant air pollution due to intensive 10 
ship traffic, directly affecting local air quality. While emission inventories are commonly used to 11 
manage ship-based air pollution, they reflect only the emission-related aspect of a specified period 12 
and area, limiting the broader interpretability and comparability of the results. To overcome the 13 
mentioned challenges, this research presented the PrE-PARE model, which enabled the prediction, 14 
analysis, and risk evaluation of ship-sourced air pollution in port areas. The model is composed of 15 
three interconnected modules. The first was applied for quantifying emissions using detailed tech- 16 
nical and movement datasets, which were combined into individual voyage trajectories to enable a 17 
high-resolution analysis of ship-based air pollutants. In the second module, the Multivariate Adap- 18 
tive Regression Splines (MARS) machine learning method was adapted to predict emissions in var- 19 
ying operational scenarios. In the third module, novel metric methods were introduced, enabling a 20 
standardised efficiency comparison between ships. These methods are supported by a unique clas- 21 
sification system to determine the emission risk in different periods, evaluate the intensity of various 22 
ship types and rank individual ships based on their operational efficiency and emission optimisa- 23 
tion potential. By combining new methods with technical and operational shipping data, the model 24 
provided a transparent, comparable, and adaptable system for emissions monitoring. The results 25 
demonstrate that the PrE-PARE model has the potential to improve strategic planning and air qual- 26 
ity management in ports while remaining flexible enough to be applied in different contexts and 27 
future scenarios. 28 

Keywords: Sustainable shipping; Air pollution; Metric system, Machine learning, Risk assessment 29 
 30 

1. Introduction 31 
To keep in line with the Paris Agreement, in 2023 the International Maritime Organ- 32 

isation (IMO) reinstated the Initial Strategy on the reduction of greenhouse gases (GHG) 33 
with a more ambitious Strategy aiming complete decarbonisation of ships by or around 34 
2050 [1,2]. However, emissions released by ships are continuously rising. The 4th GHG 35 
Study showed the significant increase in GHG emissions from international shipping, 36 
which reached a share of 2.9 % of global anthropogenic GHG pollution [3]. Future projec- 37 
tions for shipping's GHG emissions also do not support the process of full decarbonisa- 38 
tion, as global maritime trade continues to grow, the sector is still heavily reliant on fossil 39 
fuels and regulatory standards lag far behind those that apply to other modes of transport 40 
[3,4]. Although the IMO has not yet adopted reduction requirements that would unequiv- 41 
ocally cut down emissions, the implementation of global compulsory technical and 42 
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operational measures coincide with the reduction in the carbon intensity of ships, which 43 
in 2018 is on average 20 to 30 % lower compared to the base year 2008 [3–5]. 44 

The first of these requirements to enter into force in 2013 were the Energy Efficiency 45 
Design Index (EEDI) and the Ship Energy Efficiency Management Plan (SEEMP) as part 46 
of the International Convention for the Prevention of Pollution from Ships (MARPOL) 47 
Annex 6, Chapter 4 [6,7]. SEEMP is a framework designed to support ship owners in im- 48 
proving the operational efficiency and carbon intensity of their fleet [7–9]. Divided into 49 
three parts, the recent guidelines include a plan to improve energy efficiency (through 50 
hull and propulsion maintenance, use of automated engine management, voyage plan- 51 
ning, weather routeing, speed optimisation, etc.), a plan to record fuel oil consumption 52 
and methods for monitoring ship's carbon intensity [7–9]. The EEDI is a mandatory meas- 53 
ure that sets minimum energy efficiency requirements for newly built ships of 400 GT or 54 
more for the international voyage [7,10]. The EEDI is determined by combining parame- 55 
ters from the fuel-based method for emission estimation, such as the power of the engines, 56 
their specific fuel consumption and the carbon content of the fuel consumed in relation to 57 
the ship’s capacity and different correction factors corresponding to the specific type of 58 
ship and the energy-efficient technology installed [11]. The idea behind the EEDI was to 59 
encourage ship owners to apply efficient technical solutions to improve the fuel efficiency 60 
of a ship at the design stage [5,7]. The CO2 reduction level (grammes of CO2 per tonne- 61 
mile) for the first phase was set at 10% compared to a reference line calculated from the 62 
average efficiency of ships built between 2000 and 2010 and will be increased every 5 years 63 
[7]. In the meantime, MARPOL Chapter 4, including the SEEMP and the EEDI, has been 64 
extended and improved with additional requirements to try to achieve the objectives set 65 
out in the Strategy. Accordingly, in 2023 it became mandatory for relevant ships to calcu- 66 
late their achieved Energy Efficiency Existing Ship Index (EEXI) and to initiate data col- 67 
lection for reporting of annual operational Carbon Intensity Indicator (CII) and the asso- 68 
ciated CII rating [7,9,10]. The EEXI achieved by a ship indicates its energy efficiency com- 69 
pared to a baseline value. The obtained EEXI is then compared to a required value based 70 
on an applicable reduction factor expressed as a percentage relative to the EEDI [12,13]. 71 
This index must be calculated for in-service ships of 400 GT and above according to the 72 
different values for ship types and size classes, using a method based on the EEDI guide- 73 
lines [7,13]. The calculated attained EEXI value for individual ship must be below the re- 74 
quired EEXI to ensure that the ship fulfils a minimum standard for energy efficiency [7]. 75 
As one of the recent monitoring mechanisms included in the SEEMP, from 2024 the CII 76 
must be calculated for ships of 5,000 GT and above and reported together with the aggre- 77 
gated data for the previous year [14]. The CII measures the efficiency of a ship in trans- 78 
porting goods or passengers and is expressed as the mass of CO2 emissions emitted rela- 79 
tive to capacity/size and distance travelled [15]. Based on their efficiency, ships are given 80 
an environmental rating from A as the best to E as the worst performance level [16]. The 81 
annual amount of CO2 released by ships is calculated by applying the fuel-based method, 82 
in which the total mass of fuel used is multiplied by the corresponding carbon content, 83 
while the transport work can be estimated by combining various factors depending on the 84 
type of ship and the available data [17]. Therefore, IMO proposed several indicators for 85 
determining transport performance such as Annual Efficiency Ratio (AER), cgDIST, En- 86 
ergy Efficiency Operational Indicator (EEOI) [3,9,17].  87 

Although it is expected that the implementation of all the above measures will fur- 88 
ther improve the efficiency of the global fleet and reduce its carbon intensity, there are 89 
still major limitations in terms of both technical and monitoring requirements. While the 90 
4th IMO GHG study has shown a decrease in the carbon intensity of international ship- 91 
ping on the AER, research conducted by CE Delft has indicated that this reduction is 92 
mainly influenced by high fuel prices and freight rates [18]. Costs and demand in the ship- 93 
ping market have a direct impact on orders for fuel-efficient hulls and the number of new- 94 
builds, but also on fuel-saving measures [18]. According to the study by the International 95 
Council on Clean Transportation (ICCT), the EEXI would only reduce CO2 emissions 96 
from the 2030 fleet by 0.7% to 1.3% compared to a baseline, as low-speed transport would 97 
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continue to predominate [19]. The EEXI/EEDI will not directly reduce fuel consumption 98 
and CO2 emissions if ships already operate slower than the speed limit proposed in the 99 
IMO requirements [19]. This means that the effectiveness of technical efficiency measures 100 
like the EEXI need to be evaluated against real-world conditions [19]. Mentioned conclu- 101 
sion implies not only the weakness of regulatory standards, but also of the approach based 102 
on vessel design and theoretical emission parameters rather than real operational data 103 
[20–22]. Also, even though the calculation method for the CII should include the annual 104 
amount of fuel consumed, the time spent at berth and/or anchorage is not considered, 105 
which can lead to inconsistencies in the final categorisation of the ships. This applies in 106 
particular to ship types that frequently operate within port areas, such as cruise ships, 107 
container ships, ro-ro ferries, etc. [23]. In addition, the Strategy on reduction of GHG emis- 108 
sions and all the current technical and monitoring mechanisms on which it is based fo- 109 
cuses only on CO2 and is not accounting other exhaust gases [1,9,10]. Due to their contri- 110 
bution to global warming, black carbon (BC), nitrous oxide (N2O) and especially methane 111 
(CH4), as a gas that has 84 times greater potential than CO2 to trap heat in the atmosphere 112 
over a 20-year period, should also be included in the Strategy and all associated require- 113 
ments [24,25] . 114 

But more importantly, GHGs are only part of the problem. Throughout the internal 115 
processes of energy conversion and combustion, marine engines also discharge nitrogen 116 
oxides (NOx), carbon monoxide (CO), sulphur oxides (SOx), particulate matter (PM), and 117 
volatile organic compounds (VOC) recognised as one of the main air pollutant substances 118 
(APSs) [26,27]. The presence of mentioned pollutants in the atmosphere and their uptake 119 
by humans can cause mortality as well as diseases such as pneumonia, ischaemic heart 120 
disease, chronic obstructive pulmonary disease, lung cancer, and stroke [28,29]. Diverse 121 
health problems can occur with both short- and long-term exposure, especially to PM, CO, 122 
ozone (O3), NOx and SOx [28,29]. Because of the direct interaction between the shipping 123 
sector and port cities, the local urban environment is directly exposed to negative effects 124 
of air pollution. The impact on the environment and the deterioration of air quality can be 125 
severe along coastal zones and especially near seaports, as these areas are usually charac- 126 
terised by heavy shipping traffic [30,31]. Given the fact that 90% of European ports are 127 
spatially connected to cities, the extent of the deterioration in air quality is even more 128 
serious [32,33]. To monitor emissions at national level, all countries in the European Union 129 
(EU) are required to provide GHG inventories to European Environment Agency (EEA) 130 
in accordance with the Intergovernmental Panel on Climate Change (IPCC) guidelines 131 
[33–36]. However, mentioned inventories are only supposed to include GHGs, and emis- 132 
sions from maritime transport, particularly in port areas, are still not required to be spec- 133 
ified. 134 

Considering the realistic need to obtain a better insight into air pollution from the 135 
maritime sector, establishing shipping emission inventories for seaports is recognised by 136 
both the port and scientific communities [30,33,37–41]. Port-related ship emission inven- 137 
tories are generally conducted by combining either a top-down or bottom-up approach 138 
with a fuel or energy-based method to determine the quantity of pollutants emitted in a 139 
given period [37]. But to calculate the amount of emissions with higher accuracy, a bot- 140 
tom-up energy-based method should be applied to large datasets that contain both tech- 141 
nical and movement data of ships [37]. Basic technical details should include information 142 
on the type of vessel, dimensions, identifiers and engine specifications regarding type, 143 
power and speed. Movement data is generally gathered from the Automatic Identification 144 
System (AIS) and provides near real-time information on the vessel's position, actual 145 
speed and course with corresponding timestamps. As the mentioned approach is data- 146 
excessive, it can provide detailed overview into various aspects of ship-based emissions 147 
that can be used to establish guidelines for emissions management in particular ports. 148 

However, mentioned insights have a temporal and location-specific standpoint and 149 
as such do not include the aspect of equivalence between the emission-related character- 150 
istics of different ships or port areas. A systematic review of the literature on port-related 151 
ship emission inventories has shown that the quantity and type of emissions in all 152 
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analysed works were not comparable between or even for the same ports due to the in- 153 
consistency of data used [37]. Emission-related factors such as the types of pollutants in- 154 
cluded, diverse technical and movement data between ships or the area and time frame 155 
covered vary with each calculation and are specific to individual inventories [37]. Further- 156 
more, estimated emission quantities alone do not provide sufficient data to uncondition- 157 
ally categorise air pollution intensity between ships or the impact on overall pollution 158 
over different time periods [33]. In other words, without a standardised scaling system 159 
and corresponding baseline values that would allow a comprehensive comparison of 160 
emission levels between ships and overall traffic in different time windows and locations, 161 
it is difficult to determine whether a ship, a group of ships or even an entire port area is 162 
efficient or rather an excessive polluter. To predict the risk of air pollution from ships and 163 
introduce strategies for its control, all aspects must be examined and considered, which 164 
can be a computational and time-consuming process as large databases and connections 165 
between different factors need to be analysed and compared [33]. The introduction of a 166 
scalable system based on the analysis of emissions-related data from inventories could 167 
provide a more transparent and efficient prediction and evaluation of air pollution inten- 168 
sity of ships and port areas. 169 

That is why the aim of this research was to develop a unique metric, scaling, classifi- 170 
cation and ranking methods implemented inside a novel model for predicting and evalu- 171 
ating the air pollution risk and efficiency of different ship types and overall marine traffic 172 
in port areas. The port-related emissions prediction, analytics and risk evaluation (PrE- 173 
PARE) model presented in this research is therefore based on new emission evaluation 174 
approach and machine learning methods applied to actual ship technical and activity data 175 
with the goal of creating an adaptable, relevant, and transparent overall system for calcu- 176 
lating ship-related emission and classifying the level of risk for port areas in standardised 177 
manner. In the first of three main modules, the collected shipping data was prepared and 178 
used within bottom-up and energy-based methodologies to estimate emissions with high 179 
temporal and spatial density. Upon the analysis of the results, a Multivariable Adaptive 180 
Regression Spline (MARS) approach was adopted in a second module and applied to the 181 
processed datasets to assess the influence of emission-related factors and predict the levels 182 
released in various scenarios. Finally, the implementation of the novel metric, scaling, 183 
classification and ranking algorithms enabled standardised categorisation of the air pol- 184 
lution efficiency and impact, and the temporal risk level evaluation of emitted emissions. 185 
By integrating high-resolution technical and operational data with novel metrics and ma- 186 
chine learning methods, the proposed PrE-PARE system enables accurate scenario-based 187 
forecasting under varying traffic conditions, along with comprehensive, comparable, and 188 
scalable evaluation of ship performance and port-wide pollution risk. Although the logic 189 
of the PrE-PARE system differs from ambient air monitoring frameworks like the Euro- 190 
pean Air Quality Index, the underlying ambition is similar, to establish a clear, interpret- 191 
able, and quantifiable basis for evaluating pollution focused specifically on ship-based 192 
emissions in port areas [42,43]. By providing ship air pollution quantification, predictive 193 
capabilities, and novel evaluation metrics, the proposed framework pushes the bounda- 194 
ries of current practice in ship emissions assessment and aligns with broader interdisci- 195 
plinary goals in maritime policy and urban air quality management. As this paper is part 196 
of a larger research project that continues the work presented in a systematic review and 197 
the article on an analytical model for estimating ship-related emissions in port areas, the 198 
Port of Split and the corresponding emissions-related data were used as a case study 199 
[33,37]. 200 

2. Materials and Methods 201 
In contrast to the carbon efficiency and intensity indicators proposed so far, the PrE- 202 

PARE model is based on bottom-up approach and energy-based method that combines 203 
the energy output with the related emission factor (EF) and time, what provides more 204 
realistic results for the calculated emissions and the corresponding air pollution metrics 205 
of ships. As the approach described above enables the estimation of emissions for each 206 
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voyage of a ship based on technical details and operational data derived from the AIS, the 207 
emission impact and efficiency in different operating phases, including idle times, could 208 
be determined. Cruising, manoeuvring, and hoteling are modes of operation that corre- 209 
spond to the relevant workload of a ship's engines and are often performed differently 210 
between ship types or individual vessels. These ship-specific operational patterns directly 211 
affect the production of emissions and related impact. Since the model incorporates de- 212 
tailed emissions-related data, it was possible to determine the operational and air pollu- 213 
tion profile of individual ships in different segments of voyage. This feature is a key com- 214 
ponent for predicting future emissions in different scenarios and consistently determining 215 
the associated air pollution impact and efficiency through metric algorithms, not only for 216 
individual ships, but also for groups of ships with similar characteristics classified into 217 
ship types. The calculation of emissions was therefore carried out according to the bottom- 218 
up principle, i.e. for each segment of the voyage and then totalled for the ship, the associ- 219 
ated ship types and the entire port area in the assigned period. However, the air pollution 220 
risk assessment was first carried out for complete shipping traffic by applying a classifi- 221 
cation system to determine whether the impact in the port area is very low, low, moderate, 222 
high or very high. If the system classifies the risk as high or very high, the emission inten- 223 
sity of the group of ships and the optimisation potential of the individual ships are deter- 224 
mined by applying the feature scaling method to the calculated values to finally rank the 225 
ships by their emission performance. 226 

To perform the entire process, the model consists of three complex and intercon- 227 
nected modules, depicted within Figure 1. In the primary module for quantifying and 228 
analysing emissions, the collected technical and movement data were initially prepared 229 
with the aim of defining the voyage trajectories of each port arrival, stay and departure 230 
for individual ships. These voyage datasets along with specific differentiation of ship 231 
types, enabled not only a high-density estimation of the air pollutants released by the in- 232 
dividual ships together with various analytical results, but also provided a basis for the 233 
extension of the model’s forecasting capabilities. Therefore, in the second component, ma- 234 
chine learning algorithms were applied to the previously processed extensive technical 235 
and operational data to create a predictive module. Since the respective voyage trajecto- 236 
ries of the individual ships represent complex data clusters that contain important factors 237 
influencing emission production, a Multivariable Adaptive Regression Spline (MARS) ap- 238 
proach was adopted in this research to determine the effects of included factors and pre- 239 
dict the emission quantities released in different scenarios. To evaluate the performance 240 
of the predictive module, ten runs of k-fold cross-validation were performed, with addi- 241 
tional validation by comparing the predicted and actual results based on unseen data. The 242 
final component of the model is based on the data generated by the two previous modules 243 
and includes methods for assessing the emission intensity of ships, operational efficiency 244 
and the temporal risk of air pollution. This has been achieved through the integration of 245 
novel metrics, scaling and risk classification and ranking approaches, resulting in a trans- 246 
parent, comparable and efficient overview of ship-based air pollution impact in port areas. 247 
Since, the system does not only focus on carbon pollution but also includes the leading 248 
GHGs and APSs, it was able to calculate and evaluate risk of shipping emissions for CO2 249 
and CH4 as GHGs and SOx, NOx, PM10, PM2.5, NMVOC, and CO as APSs for each ship, 250 
a group of ships and an entire port area.  251 

Given the basic components of the model are derived from universal characteristics 252 
that significantly influence emissions production, the model is therefore not limited to a 253 
single case study but can be applied to different ports. In addition, the modular structure 254 
of the model facilitates the integration of new insights and other relevant aspects of port- 255 
related shipping emissions, thereby improving the quality and scope of the final output. 256 
It is important to emphasise that algorithms embedded in the PrE-PARE model and the 257 
data-handling were produced with the software package RStudio 2023.09.1+494. 258 
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Figure 1. Flow diagram of the PrE-PARE model. 260 
2.1. Emissions estimation and anlayisis module 261 

As it was stated, this paper builds on earlier work by the authors, in particular a 262 
systematic review and an article on an analytical model for estimating ship-related emis- 263 
sions in port areas [33,37]. The model presented there served as the initial module, which 264 
was adapted and integrated with novel predictive and, risk evaluation and metrics mod- 265 
ules to form the PrE-PARE system. While the full details of this component and its meth- 266 
odologies are discussed at length in the cited papers, a summary is provided in this chap- 267 
ter to ensure a comprehensive understanding of the system introduced in this study [33]. 268 

The estimation and analysis module was therefore able to produce an inventory of 269 
ship emissions for large port areas, providing a detailed overview of technical, temporal, 270 
spatial and operational aspects. To obtain the emission-related analytical results, the mod- 271 
ule integrates three main components [33]. In the initial phase, the technical and AIS da- 272 
tasets were pre-processed by applying conversion, cleansing, filtering, formatting and 273 
merging methods. These steps were essential to configure the collected data so that it was 274 
suitable for calculating emissions through the module. The technical data recorded relate 275 
to the gross tonnage (GT), length, breadth, year, main engine (MA) power, auxiliary en- 276 
gine (AE) power, engine type, engine speed, fuel type, sped at maximum continuous rat- 277 
ing (MCR) and the relevant emission mitigation technology. The activity data derived 278 
from the AIS comprised 49,540,895 reference points, which were linked to the above- 279 
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mentioned technical details of the corresponding ships via name, type and MMSI number 280 
as identifiers [33]. 281 

This was followed by the differentiation of ship types and the estimation of emissions 282 
during the processing phase. To create categories of ships with similar technical charac- 283 
teristics, data on the function of the ship and details on ship dimensions, speed and en- 284 
gines were considered. When certain ship types showed significant variations in some 285 
features (e.g. engine power), a probability distribution was applied to obtain more specific 286 
categories, eventually resulting in identifying 11 ship types: 287 

• Large Cruise Ships 288 
• Ro-Ro ferry 289 
• Large Ro-Ro ferry 290 
• Small Cruise Ships 291 
• Medium Cruise Ships 292 
• High speed crafts 293 
• Excursion ships 294 
• Tug 295 
• Pleasure Craft 296 
• Fishing 297 
• Sailing 298 

Differentiating vessel types based on multiple characteristics improved the accuracy and 299 
efficiency of imputing missing data while providing the groundwork for the predictive 300 
capabilities of the next module [33]. 301 

In the second step of the processing phase, the bottom-up approach was applied, 302 
where reference points that contain technical and operational data are combined into spe- 303 
cific movement trajectories. Then the energy-based method, which meets the require- 304 
ments of the IPCC guidelines and is expressed in Equation 1, was used to calculate the 305 
total amount of air pollutants emitted during individual port call for each ship [34]. Since 306 
altering speed during port approaches leads to change in energy output and consequently 307 
emission production, three operating modes (cruising, manoeuvring and hoteling) with 308 
the time spent in them were determined for each trajectory [44]. It was done so by esti- 309 
mating workload of propulsion engines known as load factor (LF) through propeller law 310 
method expressed in Equation (2) [44]. As the cruising mode is identified by engine loads 311 
above 20% and manoeuvring is defined with LF values that are lower, hoteling operation 312 
is considered when the ships have switched their ME off and only use the generators while 313 
at berth or at anchor [27]. Subsequently, calculations were performed to estimate the quan- 314 
tities of greenhouse gases and air pollutants emitted by all vessels documented in the AIS 315 
database for the year 2019 within the study region. 316 

 Lastly, the output data was stored and handled with the goal of producing spatial 317 
and temporal visualisations of shipping emissions as well as a detailed overview of vari- 318 
ous technical and operational aspects [37]. 319 

E = (PME 𝑥 LF 𝑥 EFME + PAE 𝑥 LF 𝑥 EFAE) 𝑥 T 𝑥 CF (1) 

where the following definitions apply 320 
 321 
E: Emissions quantity by mode for each ship call—in grams (g); 322 
PME/AE: total power of main engines/auxiliary engines—kilowatts (kW); 323 
LF: load factor expressed as actual engine work output—as a percentage of engine 324 
power (%); 325 
EFME/AE: emission factors of different pollutants in regard to engine function,  326 
Engine type, fuel type, and installation year—in grams per kilowatt hour (g/kWh); 327 
T: time spent in a certain movement activity—in hours (h); 328 
CF: correction factor for emission reduction technologies—constant. 329 
 330 

LF = (SA/SM)3 (2) 
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where the following definitions apply: 331 
 332 
SA: actual speed of the ship—in knots (kt); 333 
SM: speed of the ship at MCR—in knots (kt) 334 
 335 

2.2. Predictve module 336 
Since the first module already performed preparation of detailed emissions-related 337 

data, it was possible to develop a predictive algorithm as the second component of the 338 
PrE-PARE model. However, as the production of different APSs and GHGs form marine 339 
engines is influenced by a variety of factors that interact with each other, the prediction of 340 
emissions cannot be determined by linear functions. The relationships between the pre- 341 
dictor variables such as engine power, type and speed, fuel type, actual speed, energy 342 
output and time in the different operating modes and the released emissions are non- 343 
linear. In addition, the values of the parameters and their interactions vary between the 344 
ship types and individual ships. To overcome the complexity of predicting ship-related 345 
emissions, the MARS method was adopted in this research. 346 
2.2.1. Multivariate Adaptive Regression Splines (MARS) 347 

The MARS is a nonparametric, piecewise regression technique applicable in the mod- 348 
elling and analysis of complex, nonlinear relationships between multiple dependent and 349 
independent variables [45]. To examine the interactions and capture nonlinearity, this 350 
method automatically creates piecewise polynomials that characterize the data [46].  351 
These polynomials, referred as splines, are basis functions inside the MARS model, and 352 
prediction is made by summing the weighted output of all the basis functions in the model 353 
[47]. Simple BFs involve a single variable (x) and come in pairs of the form (x − t) + and (t 354 
− x) + where t is the knot, (x − t) + = (x − t) if x > t, and 0 otherwise; and (t − x) + = (t − x) if x 355 
< t, and 0 otherwise [47]. The modelling process has two main segments, the forward stage 356 
that has the same idea as forward stepwise regression and the backward stage or pruning 357 
where model is improved and validated [45–47]. The forward stage starts by including 358 
the constant mean of target variable (intercept). This allows for determining the break- 359 
points or knots for each predictor variable. Between each point, a fitting basis function is 360 
added. This process is being done iteratively until the threshold is reached [45–47]. Once 361 
the full set of features has been created, the algorithm sequentially removes individual 362 
features that do not contribute significantly to the model equation to avoid overfitting 363 
[46,47]. This “pruning” procedure assesses each predictor variable and estimates error rate 364 
aiming to eliminate basis functions with the least contribution [46,47]. This procedure is 365 
applied automatically through the Generalized Cross Validation (GCV) technique 366 
[45]. The GCV can be expressed as follows (3) [47]: 367 

 368 

GCV(M)	= 
1
n 	∑ (yi

n
i=1 -		f$M (xi)2)

(1 -	C(M)/n)2  (3) 

 369 
where the denominator is a complexity function, and C(M) is defined as C(M)=(M+1) 370 

+ dM of which C(M) is the number of parameters being fit and d represents a cost for each 371 
basis function optimization and is a smoothing parameter of the procedure [47]. Larger 372 
values for d will lead to fewer knots being placed and thereby smoother function estimates 373 
[45]. 374 

With the aim of obtaining more accurate results for the prediction of ship emissions, 375 
standard MARS and Boosting MARS (B-MARS) methods, with and without log normali- 376 
sation, were applied in this research to historical data processed by a previous module. 377 
This approach resulted in four distinct predictive models. Their performance was assessed 378 
and compared to determine the accuracy and reliability. To ensure an unbiased selection 379 
of data and evaluate the models, k-fold cross-validation was used during the hyperpa- 380 
rameter tuning process for MARS models where ten-fold approach was applied. The data 381 
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used for testing and training, with validation results averaged over ten runs, includes 382 
technical details and operational data derived from the AIS of ships that called at the port 383 
in 2019. 384 
2.2.2. Prediction performance validation metrics 385 

To evaluate the performance of above MARS models, the Root mean squared error 386 
(RMSE), Mean Absolute Error (MAE) and Coefficient of determination (R2), presented in 387 
Equations (4), (5) and (6) where applied in this research [46]. Above metrics asses the ac- 388 
curacy of the predictions by quantifying the errors between predicted and actual values 389 
[48]. The R2 score measures the proportion of variance in the dependent variable that the 390 
model explains [48]. Its value ranges from 0 to1, with a value closer to 1 indicating stronger 391 
relationship between variables and better predictive accuracy [49]. The RMSE calculates 392 
the square root of the mean of the squared differences between predicted and actual val- 393 
ues [46]. As the errors are squared before averaging, the RMSE is more sensitive to larger 394 
errors and directly relates to Euclidean distance [46]. Lower value indicates better perfor- 395 
mance. MAE is used to measure the average absolute difference between predicted and 396 
observed values [45,48]. Unlike RMSE, this method treats all errors equally without squar- 397 
ing them, making it less sensitive to larger deviations [48]. A low MAE indicates higher 398 
prediction accuracy.  399 

Although the above criteria are commonly used to evaluate the prediction of the 400 
models, additional validation was performed in this research by including unseen ship- 401 
ping data from 2021, 2022 and 2023. These datasets were first used to calculate ship emis- 402 
sions, and the results were then compared to those predicated by the module relying on 403 
historical data from 2019 aiming to gain a clear insight into its forecasting capabilities.   404 

 405 

R2= 1 -
∑ (Xin
i=1 - Yi)2

(∑ (Y%n
i=1 - Yi)2 (4) 

 406 

MAE	=	
1
n 	&

|Xi	-	Yi|
n

i=1

 (5) 

 407 

RMSE = (
∑ (Xi
n
i=1 -	Yi)2

n  (6) 

 408 
where Xi is the predicted ith value, and the Yi element is the actual ith value, while n stand 409 
for the number of samples [48,50]. 410 
 411 
2.3. Ship emissions metric, scaling, classification and ranking module 412 

As outlined in the introduction, the IMO has implemented various measures to reg- 413 
ulate and assess the carbon efficiency of ships, which have become basic tools in the global 414 
effort to reduce CO2 emissions from the shipping industry. However, significant method- 415 
ological limitations have been identified in mentioned measures. These constraints are 416 
particularly evident in the narrow focus on CO2, that disregards other exhaust gases and 417 
can lead to the overall environmental impact of ship emissions being overlooked, espe- 418 
cially in urbanised port areas. Also, the carbon intensity calculations exclude the hoteling 419 
phase, leading to inconsistent results that may not accurately reflect a ship’s total emis- 420 
sions profile. Adding to these issues, the measures do not fully incorporate operational 421 
data of the ships, which means that valuable insights into more realistic performance and 422 
efficiency are missing. Lastly, current imposed air pollution limitations are generally 423 
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considered insufficient to address the full scope of the industry’s environmental impact, 424 
emphasising the need for more comprehensive and differentiated approaches to assessing 425 
and regulating the sector’s environmental footprint. 426 

Consequently, the final objective of this research was to determine the air pollution 427 
impact and efficiency of ships while also providing a risk evaluation of temporal emission 428 
levels for individual ships, groups of ships and the entire port area. This was achieved in 429 
the third module, where novel metric, scaling, classification and ranking methods were 430 
applied to the outputs of the first and second modules.  431 

 432 
2.3.1. Novel metric and scaling systems for standardised measurement and transparent 433 
overview of the emission efficiency and impact of ships 434 

To establish a systematic approach for assessing the efficiency and impact of air pol- 435 
lution from individual ships while ensuring standardised measurement, the operational 436 
output of maritime transport must first be defined and weighted. Given that the primary 437 
objective of the shipping industry is to provide safe and efficient transport, emissions 438 
should be evaluated in relation to this goal. 439 

Therefore, Operational Efficiency (OE) should be defined as the ability of a ship to 440 
complete a voyage on schedule with minimal energy consumption per unit of time, as 441 
represented in Equation (7). In the context of port approach, a voyage includes arrival, 442 
stay, and departure, encompassing cruising, manoeuvring, and hoteling as three opera- 443 
tional modes, ensuring a comprehensive assessment of the vessel’s operational profile. By 444 
integrating the time required to reach the expected EO with a ship’s capacity for the in- 445 
tended operation and by comparing it against the emissions generated during the voyage, 446 
it becomes possible to determine the Vessel Air Pollution Operational Rate (VAPOR) for 447 
each mode, as defined in Equation (8). Unlike the metric system proposed by the IMO, the 448 
VAPOR considers available operational data and emissions over the entire voyage by 449 
evaluating air pollution in each mode (cruising, manoeuvring, and hoteling) separately 450 
giving the average hourly rate of exhaust production per work capacity. This allows for a 451 
standardised and detailed metric of emissions efficiency within specific operational 452 
phases. To ensure relevance, clarity and comparability, the feature scaling technique is 453 
therefore applied. The calculated VAPOR (VAPOR c) for a specific ship is normalised 454 
against the baseline VAPOR (VAPOR b) of the corresponding ship type, revealing the 455 
Ship Air Pollution Efficiency (SHAPE), as depicted by Equation (9). The VAPOR b is cal- 456 
culated by relying on extensive emissions-related database for each predefined ship-type 457 
groups, which are classified in the first module. This enables SHAPE to indicate whether 458 
a ship is operating more or less efficiently compared to the expected performance of its 459 
category. It also provides an insight into the progress made in the emission efficiency of 460 
certain ships and groups over time. 461 

In addition, a simplified and user-friendly metric system has been developed to make 462 
the contribution of specific ships to air pollution in ports more transparent to the general 463 
public. Therefore, the Ship Emissions Impact Level (SEIL) compares the emissions re- 464 
leased by a certain ship during a voyage relative to the average emissions per voyage of a 465 
generic ship within a defined time window, as shown in Equation (10). This approach 466 
provides a clear and intuitive visualisation of a ship’s air pollution impact during an entire 467 
port visit, making it easier for the wider port community to assess and compare emission 468 
levels using a standardised emissions impact scale. 469 
 470 

EO (kWh) =  & Operational	LF	(kW)	x	Operational	time	(h)
!,#,$

 (7) 

 471 

VAPOR	= 
Emissions	(g)

Work	capacity	 ∗ 	Operational	time	(h) (8) 
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SHAPE	= 
VAPOR	c
VAPOR	b (9) 

 473 

SEIL		= 
Ship	emissions	in	voyage	(kg)

Generic	ship	emissions	in	voyage	(kg) (10) 

 474 
2.3.2. Comprehensive top-down system for classifying air pollution risk in ports, 475 

evaluating emission intensity, and performance ranking of ships 476 
  477 
While emission estimation follows bottom-up methodology, this system first evalu- 478 

ates the exhaust gases released in the entire port, then relevant contribution from ship 479 
types, and finally performance of specific vessels. Mentioned stepwise process allows for 480 
a structured assessment by first identifying the risk level of overall emissions in a relevant 481 
area, followed by determining the air pollution intensity for different ship types, and fi- 482 
nally evaluating the ship-specific indicator of emission performance where the potential 483 
for emissions optimisation is calculated and combined with the SHAPE. The aim of this 484 
three-stage procedure is to ensure a fair and data-driven framework for the control of 485 
ship-sourced air pollution in ports by providing an overview from both a macro and micro 486 
perspective. 487 

To achieve this, the Port Emissions Risk Level (PERIL) classification algorithm is de- 488 
veloped aiming to determine the degree of severity of overall ship emissions in the entire 489 
port area for a specified period as a first of three steps. The algorithm categorises emis- 490 
sions into five levels (Very Low, Low, Moderate, High, and Very High) by comparing the 491 
calculated emission rates with threshold values derived from the annual average and the 492 
standard deviation. This approach uses the average as a central reference point, allowing 493 
a clear and standardised classification of emission intensity based on statistical distribu- 494 
tion rather than setting arbitrary thresholds. Upon determining the limit values, the sys- 495 
tem can automatically classify quantified shipping emissions. If the total emissions exceed 496 
the high-risk threshold, further analysis is conducted in a second step where the contri- 497 
bution of each ship group to total emissions is analysed.  498 

This includes the application of the Ship Type Emission Intensity (ST-EI) assessment, 499 
which determines the degree of air pollution of each ship group by comparing their aver- 500 
age emissions per voyage with the average emissions per voyage across all ship types in 501 
a given period, as shown in Equation (11). This method is used to create a relevant emis- 502 
sions contribution scale aimed at prioritising certain ship types for possible emissions im- 503 
provement. 504 

As a part of a final step, the Emission Optimisation Potential (EOP) is calculated for 505 
each ship by comparing its actual emissions per work capacity in each mode of voyage 506 
defined as Ship Emission Intensity (S-EI) against a reference baseline, as depicted in Equa- 507 
tion (12). The EOP is therefore used to determine the range of possible emission optimisa- 508 
tion by displaying emission exceedances with values greater than 1 or improvement of 509 
operations in stated voyage with values lower then 1. The baseline values of individual 510 
ships represent the volume of emissions released typically per work capacity in each mode 511 
of voyage and are determined by relying on historic recodes from database provided in 512 
first module. If the database lacks the operational and air pollution profile of a ship (first 513 
port visit), the second module is used for predicting the emission quantities by relying on 514 
technical and movement data of similar ships in the corresponding category. 515 

Although the EOP exposes the performance of individual ships in terms of air pollu- 516 
tion in each segment of specified voyage, some vessels may already operate efficiently, 517 
leaving little room for further optimisation. Therefore, to ensure objective ranking of 518 
ships, the Ship Emissions Performance Indicator (SEPI) is applied where emissions effi- 519 
ciency determined through the SHAPE is combined with the EOP as measure of ship’s 520 
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operational performance in specific voyage, as displayed in Equation (13). By incorporat- 521 
ing both factors, SEPI enables a fair emissions attribution and ranking, ensuring that the 522 
ships with the highest improvement potential are prioritised in the final step. 523 

 524 

ST-EI  = 
𝐸%&	x  𝑉&(&
𝑉%&	x  𝐸&(&	

 (11) 

 525 

EOP = 
S − EI	a
	S − EI	b	 

(12) 

 526 
SEPI = SHAPE 𝑥 EOP (13) 

where the following definitions apply: 527 
 528 
ST-EI: Ship Type Emission Intensity — normalised value (dimensionless); 529 
Est: Total emissions for a specific ship type —in kilograms (kg);  530 
Vst: Number of voyages for that ship type — dimensionless value   531 
Etot: Total emissions for all ship types in the period —in kilograms (kg) 532 
Vtot: Total voyages for all ship types in the period— dimensionless value   533 
EOP: Emission Optimisation Potential — normalised value (dimensionless) 534 
S-EI a/b: Ship Emission Intensity actual/baseline — as emissions mass in entire  535 
voyage per units of work capacity (kg/wcu) 536 
 537 

2.3. Data 538 
All the above methodologies integrated inside the PrE-PARE model were applied on 539 

technical and activity data of the ships that visited the Port of Split in 2019 as a case study. 540 
Mentioned datasets, along with corresponding EFs and LFs where preprocessed in the 541 
first module as briefly explained in section 2.1., creating extensive database of emission- 542 
related inputs used throughout all three components of the PrE-PARE model.   543 

Technical details of relevant ships were sourced from the Croatian Register of Ship- 544 
ping (CRS), the Croatian Integrated Maritime Information System (CIMIS) and relevant 545 
shipping company websites. The attributes collected include ship dimensions, work ca- 546 
pacity, year built, ME and AE power, type and speed, fuel type, max speed at MCR and 547 
emission reduction technologies along with identifiers such as name, type and MMSI 548 
number [33].  549 

 Since the AIS is used for sharing timely information on ship characteristics and their 550 
movement between other vessels and the shore to improve navigational safety, recorded 551 
data is also often applied for estimating emissions [30,38,51,52]. Therefore, the position of 552 
the ship, the course and speed over ground (COG, SOG) with corresponding timestamps 553 
along with name and MMSI number of specific ships as identifiers were applied in this 554 
research. For collecting mentioned datasets, the AIS station of the Faculty of Maritime 555 
Studies in Split was employed. However, as the AIS transmits messages in National Ma- 556 
rine Electronics Association (NMEA) sentence format that is unrecognisable to RStudio 557 
software, a specific Python script was developed and integrated inside the first module to 558 
convert the ‘raw’ data from AIS into a readable CSV format [33]. In the earlier mentioned 559 
preprocessing stage, erroneous and non-ship entries where then removed to finally obtain 560 
49,540,895 records of ships in 2019 used for emission estimation in the initial module but 561 
also for testing and training in the predictive module. Same procedure was applied to 562 
acquire additional 15,930,840 AIS reference points of ships visiting the same port in dif- 563 
ferent periods of 2021, 2022 and 2023 that represented unseen data used for extended val- 564 
idation of outputs produced by second module.  565 

These AIS reference points where then connected with technical data of particular 566 
ships via respective identifiers finally creating individual trajectories for each port visit. 567 
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This process enabled the identification of operating modes with corresponding temporal 568 
and spatial characteristics in each recorded voyage by estimating the energy output of ME 569 
through the propeller law method [44]. The LFs for AE were taken from relevant studies 570 
as constant values [31,35,44]. Since all emission-related technical and activity details were 571 
identified and connected into a single database, the EFs could be determined as the final 572 
and most complex dataset required for estimating and evaluating ship emissions by ap- 573 
plying the relevant methodologies described in the 3rd and 4th IMO GHG Study and the 574 
San Pedro Bay Ports Report [3,44,53]. The types of EFs along with elements for identifying 575 
them are presented in Table 1 [33].   576 

  577 

     Table 1. Engine details, modes of operation and types of EFs incorporated in the model 578 

Elements for determination and types of EFs 

Engine function Engine type Engine speed (rpm) Fuel type Mode & LF GHG EFs APS EFs 

 ME D SS D < 300 MDO/MGO C LF .= > 20 %  CO2 SOx 

AE GTU MS D 300 - 900 HFO M LF  .< 20 % CH4 NOx 
 STU HS D > 900 LNG H LF ,..= < 2 %  PM 10, 2.5 

 DF      
 NMVOC 

 D-E     
 CO 

 579 
Within the Table 1. D stands for diesel engine, GTU for gas turbine, STU for steam 580 

turbine, DF for dual fuel engine, D-E for diesel-electric engine, SS/MS/HS D for slow-/me- 581 
dium-/high-speed diesel engine, HFO for heavy fuel oil MDO/MGO for marine diesel/gas 582 
oil, LNG for liquified natural gas [33]. 583 

3. Results 584 
The integration of technical details with activity data within the PrE-PARE model 585 

enabled the determination of operating modes and EFs for each of the 65,471,735 AIS ref- 586 
erence points. These complex emission-related datasets were then combined into individ- 587 
ual voyage tracks for each ship that called at the port, creating a foundation for modelling, 588 
predicting and evaluating ship emissions in large port areas. Therefore, the model has 589 
recognised 48,256 voyages to the passenger basin of the Port of Split in 2019 and in differ- 590 
ent periods of 2021, 2022 and 2023. However, it is important to emphasize that 2019 was 591 
used as the base year in this research, so the datasets from this year were used for defining 592 
reference points, and records from other periods served for validation. The recorded num- 593 
ber of visits closely matched port traffic data, showing an average deviation of only 3% 594 
across all ship types, except for pleasure crafts, excursion and sailing ships, which lacked 595 
consistent arrival figures in the different sources. This discrepancy is largely due to their 596 
irregular schedules, often resulting in underreported AIS data. In addition, the 3% devia- 597 
tion partly reflects the ability of AIS to capture even minor vessel movements, offering 598 
higher quality input for accurate emissions estimation compared to standard port statis- 599 
tics. The share of port calls between ship types is illustrated in Figure 2. 600 

Of all the ships surveyed, the most frequently installed engine type is MS D (78%), 601 
followed by HS D (22%) and LS D (3%). Share of engine types other than D is below 1%, 602 
so their influence on overall emissions is limited. Given the engine specifications and the 603 
enforcement of the EU Sulphur Directive, it is assumed that the entire fleet operates on 604 
MDO/MGO with a maximum sulphur content of 0.1% for the duration of each voyage 605 
[33]. 606 
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 607 
Figure 2. Proportion of voyages to Port of Split in periods covered by AIS data  608 

3.1. First module – emissions estimation and analysis 609 
	 As already mentioned, the first module was based on the analytical model pre- 610 

sented in the earlier research created by the authors of this paper. Thus, an overview of 611 
various detailed technical, temporal, spatial and operational aspects of ship emissions 612 
were presented inside inventory of combustion gases released in the area relevant to the 613 
Port of Split—City port basin for 2019 [33]. Apart from an examination of monthly fluctu- 614 
ations relative to the year average, mentioned analysis was focused on different elements 615 
of annual emissions. This approach, standard for emission inventories, reveals only gen- 616 
eral insights, as emission levels and their distribution between ships changes with inter- 617 
vals considered. To enable a detailed analysis and a comprehensive evaluation of the risk 618 
and impact of emissions, the production of air pollution from marine engines should 619 
therefore be assessed over shorter timeframes. Given that a strong correlation was found 620 
between high emission levels and intensive seasonal traffic, a further and thorough exam- 621 
ination of emissions at peak times should be considered.  622 

That is why, the first module that combines energy-based method with bottom-up 623 
logic was used in this research to additionally analyse the fluctuation of daily emissions 624 
in the baseline year. The graph of daily emission totals in Figure 3, represented by the blue 625 
line, confirms the seasonal trend, but also shows considerable differences in day-to-day 626 
air pollutant levels released, not only between summer and winter periods, but also 627 
within the same months. The magnitude of the emission spikes becomes even more ap- 628 
parent when compared against the annual average of 120,164 kilograms (kg) marked by 629 
the yellow line, with emissions on some days being more than twice as high as the mean. 630 
Given the evident daily variability of ship emissions, further analysis of different aspects 631 
focussed on a particular day in July, as this month was identified as the most critical. 632 
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 633 

Figure 3. Distribution of daily emission totals and annual average expressed in kg, released by ships calling at the Port of Split 634 
passenger basin in 2019. 635 

Table 2 therefore shows the emissions quantified by the estimation and analysis mod- 636 
ule for the Port of Split passenger basin on July 2nd, 2019, as the most emission-intensive 637 
day in the selected month. The table clearly shows that total ship emissions on the date 638 
indicated were more than 2.5 times higher than the average for the base year, illustrating 639 
the severity of risk that air pollution poses to the urban environment in the short timespan. 640 
It is also evident that Large Cruise Ships are responsible for about 37% of the emissions 641 
on that day, releasing almost twice as much as Ro-Ro ferries as second largest contributors 642 
to pollution, and only 5% less than all other groups combined. This result contrasts with 643 
the annual totals and confirms the differences in the distribution of emissions over time.  644 

 645 

Table 2. Emission totals in kg for Port of Split passenger basin on July 2nd, 2019, quantified by the first module. 646 

Ship type 
GHG AP SHIP TYPE 

TOTALS CO2 CH4 SOx NOx PM10 PM2.5 NMVOC CO 
Large Cruise Ships 116,161.249 2.133 68.801 2174.880 39.936 36.741 94.975 9.674 118,588.391 

Ro-Ro ferry 63,221.461 1.102 37.466 885.589 20.553 18.908 54.663 48.716 64,288.459 
Large Ro-Ro ferry 39,378.559 0.758 23.300 733.636 13.703 12.607 36.573 3.364 40,202.501 
Small Cruise Ships 35,969.292 0.642 21.315 655.656 12.220 11.242 27.581 5.751 36,703.699 

Medium Cruise Ships 31,222.711 0.591 18.481 582.766 10.817 9.951 26.038 2.642 31,873.997 
High speed crafts 19,380.975 0.346 11.486 262.921 6.312 5.807 17.733 17.273 19,702.854 
Excursion ships 21,46.156 0.051 1.272 35.847 0.783 0.720 2.849 1.456 2,189.134 

Tug 14,60.308 0.028 0.865 18.785 0.480 0.442 1.324 1.413 1,483.644 
Pleasure Craft 1,349.716 0.047 0.800 26.445 0.584 0.537 2.797 0.616 1,381.542 

Fishing 691.295 0.021 0.410 9.374 0.272 0.250 1.081 0.765 703.468 
Sailing 94.409 0.002 0.056 2.026 0.035 0.032 0.117 0.038 96.715 

EMISSION TYPE  
TOTALS 

311,076 6 184 5388 106 97 266 92 317,214 

 647 
By comparing the calculated exhaust gas values of the individual ship types with the 648 

corresponding number of voyages in the same period, expressed as a percentage in Figure 649 
4, the disparity between the emissions released and the number of port calls for some 650 
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groups becomes clear. For instance, High speed crafts, which account for the largest share 651 
of voyages (37%), caused 6% of total emissions on a given day, while Large Cruise Ships 652 
produced 37% of total emissions from only 2% of visits. This example alone provides ad- 653 
ditional insight into the disproportionate contribution supporting the need for a thorough 654 
analysis of the conditions that cause greater production of on-board exhaust gases. 655 

 656 

Figure 4. Share of emissions (orange) and voyages (blue) between ship types relevant in research area on July 2nd, 2019. 657 
In this context, the first module was also used to examine the operational and spatial 658 

aspects of the emissions released on the selected day. Therefore, the distribution of emis- 659 
sions across operational modes was found to be 43%, 12% and 46% during cruising, 660 
manoeuvring and hoteling respectively. These values deviate notably from the annual 661 
averages, highlighting the temporal variations in emission patterns and confirming the 662 
difference in generation of air pollutants between ship types in the diverse operational 663 
modes, as illustrated in Figure 5. As can be seen, all types of Cruise ships released most of 664 
the emissions in the hoteling phase, Fishing and Pleasure crafts while manoeuvring and 665 
all others through cruising mode. 666 

Since the identified activities and their corresponding emissions occur in distinct 667 
zones within the study area, a detailed map of the emission dispersion points was gener- 668 
ated and presented in Figure 6 to illustrate the spatial distribution of air pollution. An 669 
analysis of the emission release locations, categorised by operating modes within individ- 670 
ual voyages, revealed that almost all air pollutants were released within a 12 nautical 671 
miles (NM) radius around the city centre of Split. Notably, emissions from hoteling and 672 
manoeuvring operations, comprising 58% of the day's total, occurred only 0.5 NM from 673 
the urban area, highlighting their impact on the local atmosphere. This finding is espe- 674 
cially relevant for APSs, which pose a direct threat to human health. 675 

The development of a high-density map correlating emission dispersion points with 676 
operating modes provided a detailed overview of ship-based air pollution patterns in the 677 
port area. However, as shown in Figure 4, ships often operate differently, what directly 678 
affects emission output. Furthermore, composition and workflow of fleet involved 679 
changes with the timeframe examined, meaning that even reports based on large datasets 680 
only reflect conditions specific to examined period. In order to achieve a comprehensive 681 
evaluation of ship emissions, the machine learning techniques must therefore first be ap- 682 
plied to provide relevant prediction of emissions in different scenarios on the basis of all 683 
the features analysed. 684 
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 685 

 686 

Figure 5. Distribution of emissions produced in operating modes for each ship type that visited the passenger basin of Port of Split 687 
on July 2nd, 2019. 688 

 689 

Figure 6. Spatial distribution map of ship emissions based on operating modes. The reference points shown represent the 690 
individual voyages of each ship that visited the passenger basin of the Port of Split on 2 July 2019 and contain a complete set of 691 
emission-related data. As can be seen, most of the cruising emissions, marked in blue, were released in the 11 NM parameter of 692 
urbanised area. The manoeuvring emissions shown in green extend over 12 NM but are almost entirely released within the port 693 

basin (0.5 NM from city centre). The air pollution from hoteling operations, marked in grey and identified as the largest contributor 694 
on set date, occurred just metres from populated areas, highlighting its direct impact on the local atmosphere. 695 
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 697 

3.2. Second module – emissions predction based on MARS approach 698 
In the second module, different MARS methods were applied to extensive emission- 699 

related datasets preprocesses and structured in the previous component, aiming to 700 
achieve more accurate and reliable predictive outputs. Specifically, standard MARS and 701 
B-MARS, both with and without log normalisation, were used on technical and 49,540,895 702 
AIS records of ships that visited the Port of Split during the base year 2019. 703 

As previously described, in each MARS model a ten-fold cross-validation was imple- 704 
mented where data was partitioned into ten equal subsets. Each of ten iterations inter- 705 
changeably included different 90% of the datasets into training fold and 10% in testing 706 
fold ensuring randomised and unbiased selection of inputs. To obtain clear and data- 707 
driven evaluation of outputs produced by each MARS model, RMSE, MAE and R² were 708 
calculated as key performance metrics and compared across all runs. Given the opera- 709 
tional and technical differences between ships, each MARS variant was validated sepa- 710 
rately for distinct ship categories and operational phases. Table 3 presents the average key 711 
performance metrics for all categories of Cruise ships and Ro-Ro ferries, selected as rep- 712 
resentative case studies due to their contribution of over 90% of the total recorded emis- 713 
sions. These examples effectively illustrate the predictive capability of developed models 714 
across dominant ship types and operational scenarios. 715 

The performance metrics of all four predictive models included RMSE, MAE and R² 716 
values for all categories of Cruise ships and Ro-Ro ferries in three operational modes. 717 
Models trained with log-normalised emissions were evaluated in both logarithmic units 718 
(Log-Scale MARS and Log-Scale B-MARS) and their anti-logarithmic equivalents (Origi- 719 
nal MARS and Original B-MARS), resulting in some metrics being expressed in grammes 720 
to provide interpretable, real-world error values. On the other hand, metric results for the 721 
models trained and evaluated entirely on raw emission values (MARS and B-MARS with- 722 
out log) where shown only in grammes since no normalisation was applied. 723 

Table 3. Performance metric comparison of ship emissions predictive models 724 

Ship type Mode Metric 
MARS models 

Log-Scale 
MARS  

Original 
MARS  

MARS  
Without Log  

Log-Scale     
B-MARS  

Original      
B-MARS  

B-MARS 
Without Log  

Cruise 
ships 

C 
RMSE  0.094 370984.728 g 587,208.1 g 0.397 294,2934 g 566,174.7 g 

R²  0.997 0.996 0.990 0.920 0.74194  0.99269 
MAE  0.071 214953.697 g 420,379 g 0.156 871,928 g 360,756.3 g 

M 
RMSE  0.190 535,904 g 844,628 g 0.130 384,456 g 872,822 g 

R²  0.993 0.993 0.990 0.997 0.9977 0.984 
MAE  0.135 310,311 g 435,491 g 0.097 208,845 g 451,754 g 

H 
RMSE  0.088 1300580 g 333946.000 g 0.090 1437849 g 290938 g 

R²  0.997 0.995 1.000 0.997 0.9934 0.999 
MAE  0.056 733883.000 g 187609.000 g 0.058 749500 g 178251 g 

Ro-Ro 
ferries 

C 
RMSE  0.070 74,100 g 100,525 g 0.062 78,208 g 80,749 g 

R²  0.989 0.997 0.994 0.991 0.9963 0.9626 
MAE  0.025 41,076 g 54,154 g 0.027 46,851 g 47,2078 g 

M 
RMSE  0.130 45,728 g 32,810 g 0.126 38,581 g 27,135 g 

R²  0.991 0.910 0.955 0.991 0.9377 0.9694 
MAE  0.071 6,989 g 9,360 g 0.061 5,542 g 8,057 g 

H 
RMSE  0.634 130,894.91 g 104,916 g 0.641 136,666 g 73,625 g 

R²  0.852 0.997 0.996 0.832 0.9962 0.998 
MAE  0.176 41,719.50 g 37,042 g 0.270 41,021 g 17,496 g 

 725 
Overall, log-normalised models generally performed better when handling skewed 726 

data, but performance varied by ship type and mode. Notably, B-MARS without log 727 
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transformation achieved the lowest MAE and RMSE values in certain cases (e.g., Ro-Ro 728 
ships in mode M with an MAE of 17,459 g), suggesting that models based on raw values 729 
can outperform log-transformed ones when the data distribution is more balanced. These 730 
results showed that the most effective approach depends not only on the algorithm, but 731 
also on the nature of the emission data in different operational contexts.  732 

However, since the B-MARS model, which was trained without log on average 733 
showed the most accurate prediction performance on average, it was implemented in the 734 
PrE-PARE system as the second module. Although the results generated by the chosen 735 
prediction module showed high accuracy, further validation was performed with unseen 736 
data. This was done to verify the module's ability to accurately predict emissions in dif- 737 
ferent scenarios with unknown (first visit) ships and unpredictable changes in the opera- 738 
tion of the included vessels. Therefore, a total of 15,930,840 AIS reference points and the 739 
corresponding technical details of the ships calling at the port in different periods of 2021, 740 
2022 and 2023 were applied as unseen data for the extended validation of the results pro- 741 
duced by the second module. 742 

In this process, the non-log B-MARS module, trained on emission data from 2019, 743 
was used to predict emissions from Cruise ships and Ro-Ro ferries in all three modes 744 
which were then compared with the actual levels released by corresponding ship types in 745 
periods of 2021, 2022 and 2023, as shown in Figure 7 The graphs display cruising, manoeu- 746 
vring and hoteling modes from top to bottom, with panels labelled (a) corresponding to 747 
Ro-Ro ferries and those labelled (b) representing Cruise ships. The blue dots in each scat- 748 
ter plot present emissions predicted by module, while the actual emissions based on real 749 
data are illustrated by red dotted line. 750 

In all modes and for both ship types, the predictions closely match the reference line, 751 
indicating that the model generalises well beyond its original training dataset. Strongest 752 
alignment is observed in the cruising and hoteling modes, where the predictions show 753 
minimal deviation from the actual values. Even though some over or underestimation can 754 
be observed for outliers with high emissions, especially in manoeuvring and hoteling op- 755 
erations done by cruise ships, the overall performance indicates that the B-MARS model 756 
trained on 2019 data is able to produce robust and accurate predictions of ship emissions 757 
in different scenarios and future trends.  758 

 759 

  
(a) (b) 

Figure 7. Comparison of ship emissions based on real data and values predicted by non-log B-MARS module for Ro-Ro ferries (a) 760 
and Cruise Ships (b) in C, M and H modes placed from top to bottom. 761 
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3.3. Third module – ship emissinons metric, scaling, classification and ranking module 762 
Although the second module demonstrated effective predictive performance for ship 763 

exhaust gasses even under new conditions, the modelled results always reflect the emis- 764 
sion-related attributes of a specified period, as determined by analysing the outputs gen- 765 
erated by the first module. Spatial, temporal, technical and operational aspects vary with 766 
the intervals considered, which limits the broader interpretability and comparability of 767 
the results. Furthermore, the repeated generation, examination and comparison of results 768 
is time-consuming and requires both computational and expert resources. Therefore, 769 
adapting a standardised system for evaluating air pollution risk in ports, ranking emission 770 
intensity and assessing the potential for ship emission optimisation would be a more effi- 771 
cient and scalable solution. That is why, in this research, novel methods integrated within 772 
the third module were applied on outputs produced by the analytical component of PrE- 773 
PARE system.  774 
 775 
3.3.1. Standardised and interpretable measurement of ship emissions efficiency and im- 776 
pact based on novel metric and scaling methods  777 

As a central method to universally determine the emission efficiency and perfor- 778 
mance of individual ships, the VAPOR as novel metric system was established and ap- 779 
plied in this research. Therefore, processed datasets of all ships recorded in 2019 were 780 
used to calculate the baseline VAPOR (VAPOR-b), which quantifies the hourly emissions 781 
production in grammes (g) per unit of working capacity in different modes of operation. 782 
For all types of cruise ships, high-speed vessels, pleasure craft, sailing ships and excursion 783 
vessels, the working capacity was defined based on passenger capacity. In the case of Ro- 784 
Ro ferries, both passenger and vehicle capacity were considered. For tugboats, the bollard 785 
pull was used as a measure of working capacity, while for fishing vessels the net volume 786 
of cargo space was applied. These results where aggregated to derive average VAPOR-b 787 
for each ship type, as illustrated in Figure 8 for APSs (SOx, NOx, PM10, PM2.5, NMVOC, 788 
and CO) as emissions with local impact. It must be clarified that the maximum working 789 
capacity has been used as a static value, independent of the actual utilisation of the ships, 790 
to create a static reference point that can be compared with the actual emission produc- 791 
tion, optionally considering the actual workload of the individual ships. Furthermore, in 792 
the context of port visits, which include arrival, stay and departure, the mentioned capac- 793 
ities have been doubled for all vessels as they are able to embark/load and disembark/un- 794 
load passengers/goods during a single voyage, as defined in this research. The exceptions 795 
are Tugs, as their working capacity is defined by the bollard pull, and Fishing vessels, that 796 
use their capacity at sea and do not overturn the goods in both directions. When compar- 797 
ing all three modes of operation, Pleasure crafts exhibited the highest hourly rate of ex- 798 
haust production per unit of work capacity, reaching 763 g in cruising mode. This high- 799 
lights the correlation between small work capacity and relatively high-demand engines. 800 
In contrast, Ro-Ro ferries, which are often equipped with similarly powerful engines but 801 
with large work capacity, demonstrated the overall lowest emission rates per working 802 
unit, despite being the largest annual polluters and the second in total emissions on the 803 
observed day. In addition, Sailing ships showed a high emission rate of 640 g in cruise 804 
mode, due to the assumption of continuous engine usage, thus the analysis in this study 805 
reflects the worst-case operational scenario for this ship type. 806 
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 807 

Figure 8. Overview of hourly rate of APS production in g per work capacity (APS VAPOR-b) in each mode across all ship types 808 
calling at Port of Split in baseline year 2019. 809 

These baseline values were then applied in a scaling process, where they were com- 810 
pared to the actual VAPOR (VAPOR-a) calculated for vessels calling at the port on 2 July 811 
2019. It is important to note that the work capacities used for calculating VAPOR-a were 812 
treated consistently with those applied to the VAPOR-b. By correlating mentioned values, 813 
the SHAPE metric was derived for each operational mode of every ship recorded on the 814 
observed day. The SHAPE values greater than 1 indicate reduced emission efficiency 815 
(higher actual hourly emission rate per capacity), whereas values below 1 reflect better 816 
efficiency. Given that the Large cruise ships were recognised as the most significant con- 817 
tributors to emissions on stated day, Figure 9 presents the APS results from both the met- 818 
ric and scaling perspectives for one representative vessel from this category. The left-hand 819 
panel (a) displays a comparison between the calculated VAPOR-a and the reference VA- 820 
POR-b across operational modes. For example, Large cruise ship 1 (L.C.S. 1) in hoteling 821 
phase on hourly basis produced 13 g of APSs per unit capacity more than ships with sim- 822 
ilar characteristics. The right-hand panel (b) illustrates the corresponding SHAPE values, 823 
normalized against the baseline. The bars represent the ship's actual efficiency, while the 824 
yellow dashed line indicates the reference point (SHAPE = 1). These results show that 825 
L.C.S. 1 was on average less efficient in all operating modes. 826 

The application of VAPOR and SHAPE to the case of a L.C.S. 1 clearly demonstrates 827 
the ability of the metrics to provide transparent and pragmatic insights. As can be seen in 828 
Figure 8, both the raw (VAPOR) and normalised (SHAPE) results are intuitively visual- 829 
ised across all operating modes, enabling easy identification of inefficiencies in this exam- 830 
ple. The standardised calculation method, which is based on available operating and emis- 831 
sions data, ensures that the results are not only objective but also directly comparable with 832 
ships of similar features. The simplicity of interpretation, particularly through the SHAPE 833 
values relative to the baseline, makes these metrics highly effective for communicating 834 
emissions performance as they do not require high expert or computational resources. In 835 
addition, as the metric is based on available operational data, it provides more realistic 836 
results and can be used universally to monitor the emission efficiency of ships at an inter- 837 
national level. 838 
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Figure 9. (a) Comparison between actual VAPOR-a and reference VAPOR-b values across different operational modes; (b) 840 
Normalized SHAPE values for Large Cruise Ship 1. The bars represent the calculated SHAPE for each mode, while the yellow 841 
dashed line marks the reference efficiency (SHAPE = 1), indicating that Large cruise ship 1 performed less efficiently across all 842 

modes. 843 
To complement the technical metrics with a more accessible perspective for the wider 844 

port community, the SEIL was applied on the day analysed. As a simplified and intuitive 845 
indicator, the SEIL expresses the total emissions released by each ship during its port visit 846 
relative to the emissions of a “generic” ship, whose value is derived by aggregating the 847 
total emissions and voyages of all ships recorded on that day. This allows a clear compar- 848 
ison of individual ship impacts on a standardised scale. As illustrated in Figure 10, SEIL 849 
provided a visual ranking of ships based on their emissions per voyage on a selected day, 850 
highlighting those that contribute more than average to air pollution in the port area. The 851 
introduction of this metric supports greater transparency and enables informed discus- 852 
sions on emissions accountability among port stakeholders and the general public. 853 

The SEIL results clearly reveal the disproportionately high environmental impact of 854 
certain ships. In particular, Large Cruise Ship 1 emitted over 17 times more air pollutants 855 
than the average ship during a single voyage on the examined day. This straightforward 856 
contrast emphasises the magnitude of emissions caused by high-consumption ships. Fur- 857 
thermore, the results show that while Ro-Ro ferries as a group make the second largest 858 
contribution to emissions, a typical Ro-Ro ferry would have to make approximately 23 859 
separate voyages to match the emissions generated during a single port visit by the Large 860 
Cruise Ship 1. These results highlight the extent to which such ships contribute to local air 861 
pollution and emphasise the importance of differentiated emission management strate- 862 
gies in port operations. 863 
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 864 

Figure 10. The Ship Emissions Impact Level (SEIL) of vessels calling at the port on the 2nd July 2019. The SEIL metric expresses the 865 
emissions per port visit (voyage) in relation to a standardised “generic ship” represented by the dashed line (value = 1). Notably, 866 
the Large Cruise Ship 1 emitted over 17 times the average, while most ships, including Ro-Ro ferries and High speed crafts, were 867 
below or close to the reference point. This visualisation illustrates the significant differences in the impact of emissions between 868 

individual ships. 869 
 870 

3.3.2. Classification of Air Pollution Risk and Ranking of Ships Based on Emission Inten- 871 
sity, Optimisation Potential, and Performance in Port Areas 872 

To effectively evaluate and manage ship emissions in the port areas, a top-down sys- 873 
tem for determining air pollution risk, intensity and performance was developed and ap- 874 
plied to real operational data. As a first part of three-step process, the PERIL classification 875 
algorithm was implemented on daily emission totals quantified by the first module for 876 
the baseline year 2019. This approach, based on statistical distribution, segments daily 877 
emissions into five categories by using standard deviation and the mean value as central 878 
reference points. These categories are visualised in Figure 11, where thresholds are de- 879 
fined from the annual average of daily exhaust gases and their variability: Very Low (dark 880 
green) spans from 0 kg to 60,081 kg, Low (light green) from 60,081 kg to 120,163 kg, Mod- 881 
erate (yellow) from 120,163 kg to 180,246 kg, High (orange) from 180,246 kg to 240,327 kg, 882 
and Very High (red) that includes all values above 240,327 kg. 883 

Although the Moderate zone begins above the average, it encompasses values within 884 
one standard deviation and can thus be considered as a part of the statistically normal 885 
range. This classification methodology avoids arbitrary thresholds and supports mean- 886 
ingful distinction between typical and extreme emission events, enabling targeted emis- 887 
sion control, particularly in the High and Very High categories. According to the PERIL 888 
classification, 13 out of 360 days were categorised as Very High risk and 50 as High risk, 889 
with the events distributed between April and November. This finding indicates that 890 
overall, only a minority of days have a significantly increased risk. 891 
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 892 

Figure 11. The Port Emissions Risk Level (PERIL) classification algorithm appled on daily ship emissions qunatified by the fisrt 893 
module for the basile 2019 in are relevan to Port of Split.  894 
Due to total ship emissions reaching 317,214 kg on 2 July 2019, corresponding to 2.6 895 

standard deviations above the annual mean, the day was clearly classified in the Very 896 
High risk category. This result prompted further analysis aiming to categorically identify 897 
the sources of high ship-emissions.  898 

To determine the distribution of emissions among the various ship groups, the ST-EI 899 
method was applied in a second step of the bottom-down approach. This measure com- 900 
pares the quantified emissions per voyage for each ship type with the overall average for 901 
the fleet in the period analysed and thus highlights categories with significant intensity. 902 

As can be seen in Figure 12, Large Cruise Ships exhibited the highest APS intensity 903 
of all ship types on the day observed, indicating that they had the most significant impact 904 
per port call. This result served as the basis for further analysis of the individual vessels 905 
first within this group and assess their optimisation potential.  906 

 907 

Figure 12. The Ship Type Emission Intensity (ST-EI) method for measuring the degree of air pollutants released in all ship types 908 
compared to temporal total ships emissions per all voyages, applied for APSs on examied day, 2nd July 2019.     909 
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In the final stage of the process, the EOP was calculated to determine the quantity of 910 
emissions that could realistically be reduced. This was initially performed for the two 911 
ships that comprise the entire Large Cruise Ship category by comparing their actual emis- 912 
sion per work capacity (S-EI a) through the entire voyage with their historical baseline (S- 913 
EI b), which reflects the average emissions released per work capacity during all previous 914 
port visits.  915 

In contrast to VAPOR, which is a universal metric method that quantifies the hourly 916 
production of emissions per capacity, the S-EI used in the EOP focuses on the total emis- 917 
sions during a complete voyage. It integrates the total time spent in each mode and is thus 918 
sensitive to the temporal and spatial differences specific to operational pattern of individ- 919 
ual ships. Due to these variations, the S-EI cannot be used for a direct and clear compari- 920 
son between ships. Instead, it enables intra-ship performance evaluation by comparing 921 
each voyage with the vessel’s own operational history. 922 

As shown in Figure 13, Large Cruise Ship 2 exhibited lower-than-expected emissions 923 
in all voyage segments, indicating overall efficient operation. In contrast, Large Cruise 924 
Ship 1 demonstrated higher emission outputs in hoteling by 20% and by 5% in manoeu- 925 
vring operations, while cruising was slightly below average, suggesting the concrete po- 926 
tential for improvement. The EOP values were then combined with SHAPE, a metric that 927 
reflects universal emissions efficiency of each ship, to calculate the Ship Emissions Perfor- 928 
mance Indicator (SEPI). By integrating emission efficiency and optimisation potential, the 929 
SEPI enables a fair and balanced ranking of vessels. 930 

In the end, all ships recorded on the analysed day were automatically categorised 931 
first by the ST-EI and then by SEPI, with the corresponding SHAPE and EOP values, what 932 
is displayed in Table 4 for the top 10 ranked ships. This layered classification enables not 933 
only targeted emission control for the most intensive vessel types, but also identifies spe- 934 
cific vessels that should be prioritised for further optimisation interventions, ensuring a 935 
fair and data-driven basis for port emissions management.  936 

 937 

 938 

Figure 13. Emission Optimisation Potential (EOP) results for APSs of Large Cruise Ship 1 and 2, presented as percentages. Large 939 
Cruise Ship 2 demonstrated better performance across all operational modes, while Large Cruise Ship 1 showed notable 940 

optimisation potential, particularly in hoteling and manoeuvring, where emissions exceeded typical values 941 
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Table 4. Ranking of the top ten ships in the Port of Split on 2 July 2019, based first on the ST-EI, and 945 
SEPI indicators for the entire voyage, including the SHAPE and EOP values for each operating 946 
mode. 947 

Ranking Name ST-EI Mode SHAPE EOP SEPI voyage 

1 Large Cruise 
Ship 1 16.26 

C 1.24 0.97 
1.56 H 1.64 1.20 

M 1.45 1.05 

2 
Medium 

Cruise Ship 
1 

11.91 
C 0.96 0.70 

1.16 H 1.17 0.95 
M 1.04 1.62 

3 Ro-Ro ferry 
9 0.58 

C 1.21 1.11 
2.37 H 1.20 3.37 

M 0.99 1.75 

4 Ro-Ro ferry 
4 0.58 

C 1.49 0.90 
1.92 H 1.61 0.67 

M 1.49 2.23 

5 Ro-Ro ferry 
4 0.58 

C 1.76 1.06 
1.52 H 1.61 0.11 

M 1.31 1.92 

6 
Ro-Ro ferry 

6 0.58 
C 0.99 1.14 

1.22 H 0.76 2.10 
M 0.64 1.44 

7 Tug 1 0.41 
C 0.99 1.11 

1.05 
M 2.16 0.47 

8 High speed 
craft 1 0.17 

C 0.93 1.09 
1.50 

M 0.85 2.35 

9 High speed 
craft 7 0.17 

C 1.81 1.56 
1.37 H 1.18 1.07 

M 0.00 0.86 

10 
High speed 

craft 8 0.17 
C 1.02 0.18 

1.30 H 1.07 1.59 
M 1.05 1.93 

 948 

3. Discussion  949 
The results generated by the PrE-PARE model demonstrate that by applying meth- 950 

odologies integrated within its three modules to the extensive technical and operational 951 
data, ship-sourced emissions in port areas can be effectively quantified, analysed, pre- 952 
dicted, evaluated, and categorised in a clear, comparable, and standardised manner. Alt- 953 
hough each module can operate separately and produce function-specific outputs, their 954 
compatibility and shared reliance on structured shipping data support the control of port- 955 
related air pollution by simplifying the complex relations between the different aspects of 956 
ship emissions as a final outcome. As demonstrated in this and previous studies, technical, 957 
temporal, spatial and operational factors vary in relation to the area and period consid- 958 
ered, leading to inconsistencies in the interpretation of their influence on port-related air 959 
pollution. This variability complicates the analysis and prevents a meaningful comparison 960 
of the results in different contexts. The combination of novel metric, scaling, classification 961 
and ranking methods with quantified emissions-related data therefore enabled an effec- 962 
tive interpretation of the various implications crucial for analysing and managing ship 963 
emissions in ports throughout changing conditions. In practical terms, the PrE-PARE 964 
model provides tangible answers to the critical management questions: What level of 965 
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emissions should be considered high for a given port? Which ships perform efficiently in 966 
terms of emissions? And which vessels should be prioritised for operational optimisation? 967 

The introduction of the VAPOR and SHAPE as central metric methodologies ad- 968 
dressed the need for a universal, data-driven measure of ship emission efficiency. In con- 969 
trast to conventional regulatory indicators such as EEDI, EEXI, or CII, which are primarily 970 
based on theoretical design parameters and emissions per NM, overlooking time spent in 971 
port, the VAPOR reflects hourly emissions per ship-specific unit of work capacity across 972 
all operational modes, including cruising, manoeuvring, and hoteling, by relying on avail- 973 
able operational data. Moreover, while the referenced IMO indicators are limited to as- 974 
sessing CO2 emissions, the metrics presented in this research encompass a broader range 975 
of air pollutants, offering a more comprehensive evaluation of a ship’s environmental 976 
footprint. Additionally, the application of SHAPE facilitates comparability by normalising 977 
and comparing calculated values against category-specific baselines, thereby enabling 978 
clear and consistent performance monitoring. The practicality of using the PrE-PARE met- 979 
rics is demonstrated by comparing Ro-Ro ferries and Large Cruise Ships, both of which 980 
contribute significantly to emissions in the Port of Split. While Large Cruise Ships were 981 
the dominant emitters on the analysed day, Ro-Ro ferries accounted for the highest annual 982 
totals. However, across all operational modes, Ro-Ro ferries emitted approximately 5 to 983 
10 times less APSs than Large Cruise Ships on the VAPOR-b. This contrast emphasises the 984 
value of applying standardised metrics that account for a work capacity of a ship and 985 
apply a consistent time unit, such as hourly output, allowing a meaningful assessment of 986 
performance for different ship types and timeframes in all operating modes. 987 

Although the VAPOR was applied within the port area for this study, its calculation 988 
is not spatially limited. The model can be extended to evaluate emissions along the entire 989 
voyage, allowing a continuous analysis from port to port on sea and ocean passages. This 990 
flexibility makes the model suitable not only for port management, but also for regional 991 
policy development, transboundary environmental assessments and global monitoring of 992 
the efficiency of specific ships and related groups. In addition to these metrics, the SEIL 993 
indicator further simplifies the interpretation of a ship’s air pollution during a single voy- 994 
age making the results accessible to experts and inclusive for the broader community. 995 

To evaluate the risk of shipping emissions in different timeframes, the PERIL classi- 996 
fication algorithm was developed and applied, where aggregated averages and standard 997 
deviations are used to objectively classify overall port emissions into categories ranging 998 
from Very Low to Very High.In the context of this research, the algorithm identified only 999 
13 Very High and 50 High emission days for the Port of Split, unevenly distributed 1000 
throughout 2019, highlighting the need for improved management of port activities, par- 1001 
ticularly during expected peak emission periods. 1002 

Following the PERIL classification and continuing the top-down evaluation process, 1003 
the ST-EI method was applied to identify and rank the ship types based on their emission 1004 
intensity relative to their operational activity. On the analysed day, Large Cruise Ships 1005 
were recognised as the ship type with the highest emission intensity. This result directed 1006 
the subsequent evaluation of all recorded vessels, starting with those within high-impact 1007 
group. The EOP and SEPI indicators were thus applied to determine both the emission 1008 
performance and optimisation potential of individual ships. These indicators revealed 1009 
clear distinctions in performance levels, enabling a fair and targeted ranking system that 1010 
prioritises ships with the greatest room for improvement within relevant groups.  1011 

It is important to emphasise that by combining a predictive module based on the B- 1012 
MARS machine learning approach with other components of the model, the system ex- 1013 
tends beyond current conditions and enables the modelling, prediction and evaluation of 1014 
possible future pollution scenarios. This feature supports strategic planning and enhances 1015 
port resilience against emerging operational and environmental challenges. 1016 

In this context, the modular structure of the PrE-PARE model ensures a high degree 1017 
of flexibility that allows the possible integration of new methodological findings, regula- 1018 
tory requirements or additional emission-related factors without changing the basic ar- 1019 
chitecture and logic of the system. This adaptability also enables the application in 1020 
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different areas, maritime transport structures and port operation contexts, regardless of 1021 
size or local emission characteristics. At the same time, the outputs generated by the 1022 
model remain consistent, comparable and easy to interpret as they are based on a relevant 1023 
methodological foundation supported by extensive operational and technical data. 1024 

Ultimately, all the mentioned features support the future adaptation of the model as 1025 
a decision support system for the control of ship-based emissions in ports, as well as a 1026 
framework for the introduction of air pollution tariffs in the broader context of integrated 1027 
environmental management in seaports. 1028 

5. Conclusions 1029 
The PrE-PARE model presented in this research demonstrated the capacity to model, 1030 

analyse, predict and comprehensively evaluate port-related air pollution from ships by 1031 
combining relevant methodologies with emission-related data. To perform these tasks ef- 1032 
fectively and in a standardised manner, the model comprises three interconnected mod- 1033 
ules: 1034 
• emissions quantification and analysis,  1035 
• emission prediction under different scenarios,  1036 
• emissions metric, scaling, classification and ranking. 1037 

 All three modules with integrated methods were applied to extensive technical and 1038 
operational data for all ships that visited the passenger basin of the Port of Split in 2019 1039 
and in different periods of 2021, 2022 and 2023. 1040 

The first module applied a bottom-up logic and energy-based approach to quantify 1041 
the emissions of each voyage covering all operating modes for all recorded ships, provid- 1042 
ing a high-resolution emissions inventory for the Port of Split in 2019. This module was 1043 
also used for the detailed analysis of technical, temporal, spatial and operational aspects 1044 
for 2 July 2019 as a day with particularly high emissions.  1045 

 In the second module, a B-MARS machine learning algorithm was applied to predict 1046 
the emissions of different ship types. The module demonstrated strong predictive perfor- 1047 
mance and was validated against unseen technical and 15,930,840 AIS records, confirming 1048 
its consistency and capacity to forecast emissions in various scenarios. 1049 

The third module implemented novel metric tools such as VAPOR and SHAPE, 1050 
which enabled standardised efficiency comparisons between ships, while classification 1051 
systems such as PERIL and ST-EI identified high-risk emission periods and intensive ship 1052 
groups. These methods were further supported by EOP and SEPI indicators, which of- 1053 
fered a structured methodology for assessing operational optimisation potential and a fair 1054 
vessel ranking. In addition, the SEIL metric provided a contextualised insight into the im- 1055 
pact of individual ships on each voyage, improving interpretability and promoting aware- 1056 
ness of air-pollution of ship-sourced air pollution for the wider port community. 1057 

Together, the components of the PrE-PARE model form a transparent and flexible 1058 
system for the efficient and standardised monitoring of ship emissions, particularly within 1059 
port areas. Its modular architecture allows for adaptability in diverse regulatory, spatial, 1060 
and operational contexts. The results show that the PrE-PARE model is not only an effec- 1061 
tive tool for current emission control and environmental planning in ports, but also holds 1062 
significant potential for application in broader maritime networks and future operational 1063 
scenarios. As such, it represents a valuable foundation for sustainable port management 1064 
and the development of emissions-based policy mechanisms within integrated environ- 1065 
mental decision support systems. 1066 
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